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Abstract

Background: Cannabinoids including cannabidiol have recognized genotoxic activities but
their significance has not been studied broadly epidemiologically across the teratological
spectrum. We examined these issues including contextual space-time relationships and

formal causal inferential analysis in USA.

Methods: State congenital anomaly (CA) rate (CAR) data was taken from the annual reports
of the National Birth Defects Prevention Network 2001-2005 to 2011-2015. Substance abuse
rates were from the National Survey of Drug Use and Health a nationally representative
longitudinal survey of the non-institutionalized US population with 74.1% response rate.
Drugs examined were cigarettes, monthly and binge alcohol, monthly cannabis and analgesic
and cocaine abuse. Early termination of pregnancy for abortion (ETOPFA) rates were taken
from the published literature. Cannabinoid concentrations were from Drug Enforcement
Agency. Ethnicity and income data were from the US Census Bureau. Inverse probability

weighted (IPW) regressions and geotemporospatial regressions conducted for selected CAs.

Results. Data on 18,328,529 births from an aggregated population of 2,377,483,589 for mid-
year analyses 2005-2013 comprehending 12,611 CARs for 62 CAs was assembled and
ETOPFA-corrected (ETOPFACAR) where appropriate. E-Values for ETOPFACARS by
substance trends were elevated for THC (40 CAs), cannabis (35 CAs), tobacco (11 CAS),
cannabidiol (8 CAs), monthly alcohol (5 CAs) and binge alcohol (2 CAs) with minimum E-
Values descending from 16.55, 1.55x10, 555.10, 7.53x10", 9.30 and 32.98. Cardiovascular,
gastrointestinal, chromosomal, limb reductions, urinary, face and body wall CAs particularly
affected. Highest v. lowest substance use quintile CAR prevalence ratios 2.84 (95%C.I. 2.44,
3.31),4.85 (4.08, 5.77) and 1.92 (1.63, 2.27) and attributable fraction in exposed 0.28 (0.27,
0.28), 0.57 (0.51, 0.62) and 0.47 (0.38, 0.55) for tobacco, cannabis and cannabidiol. Small
intestinal stenosis or atresia and obstructive genitourinary defect were studied in detail in
lagged IPW pseudo-randomized causal regressions and spatiotemporal models confirmed the
causal role of cannabinoids. Spatiotemporal predictive modelling demonstrated strongly
sigmoidal non-linear cannabidiol dose-response power-function relationships (P= 2.83x10™®

and 1.61x10™"* respectively).
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Conclusions. Data implicate cannabinoids including cannabidiol in a diverse spectrum of
heritable CAs. Sigmoidal non-linear dose-response relationships are of grave concern.
These transgenerational genotoxic, epigenotoxic, chromosomal-toxic putatively causal

teratogenic effects strongly indicate tight restrictions on community cannabinoid penetration.

Key words: cannabis, cannabinoid, A9-tetrahydrocannabinol, cannabigerol, cannabidiol,
mechanisms, congenital anomalies, teratogenesis, genotoxicity, epigenotoxicity, limb
reduction deficiencies, leg reduction deficiencies, chromosomal toxicity, multigenerational

genotoxicity, transgenerational teratogenicity.
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Background

Both “Epidiolex” (cannabidiol) registered in the USA by the Food and Drug Administration
(FDA) and Sativex (A9-tetrahydrocannabinol (THC) - cannabidiol) registered by the
Medicines and Healthcare Products Regulatory Authority (MHRA) of the United Kingdom
carry strong warnings on their Product Information and Prescribers Information leaflets
against their use in pregnancy and breast feeding which is the standard warning for genotoxic
effects which routinely accompanies medicines including cytotoxic and cancer agents [1, 2].
Similar warnings occur on the labelling of “Hemp Oil” which is made freely accessible to the
Australian public on supermarket shelves. Such overt warnings relating to acknowledged
genotoxicity by the distributors and marketers of cannabinoids, and mandated warnings
required by official drug regulators on both sides of the Atlantic directly imply that the
genotoxicity of these agents is acknowledged in laboratory and preclinical studies and is in

truth an established fact of science.

Paradoxically what might be termed the “standard” or “establishment” view of the risks
posed by the use of cannabinoid products in pregnancy is relatively benign. Major authorities
and several smaller convenience sample series claim that the use of cannabis in pregnancy is
associated with increased prematurity, smaller head circumference, increased small for
gestational age, low birth weight and relative infertility in male and female users [3-5]. This
view which enjoys widespread currency in the medical profession, is clearly at odds with the
official governmental view endorsed in the requirements on registered product information
for the medical profession and consumers, but is nevertheless typical of the community-wide

confusion relating to much of the information on cannabis and cannabinoids.

A broader and more concerning view on cannabinoid teratogenicity is expressed by other
authorities including the Centres for Disease Control (CDC) Atlanta, Georgia, the American
Heart Association (AHA) and the American Academy of Paediatrics (AAP) who have
together warned of increased rates of six birth defects after prenatal cannabis exposure
including ventricular septal defect, Epsteins anomaly, gastroschisis, diaphragmatic hernia,
oesophageal atresia with or without tracheoesophageal fistula and anencephalus [6-8]. The
American College of Obstetricians and Gynaecologists (ACOG) strongly warn against the
use of cannabis products in pregnancy [9]. Longitudinal studies of neurological and

psychomotor development in prenatally exposed children conducted in Pittsburgh, Toronto
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and Netherlands uniformly indicate worrying levels of autism-like and ADHD-like features
with altered neurological development and impairments of emotional development, motor

tone and fine motor skills and cortical executive and visuospatial processing [10].

The most useful experimental animal models in which to study the effects of prenatal drug
exposure are New Zealand white rabbits and hamsters. Classical studies from 1969
performed in rodents and hamsters showed a variety of defects including limb reduction,
exencephaly, spina bifida, omphalocele, multiple malformations and myelocoele [11, 12]. As
was noted at the time “this is a formidable list” [12]. However clinical confirmation of such a
concerning and wide-ranging spectrum of congenital anomalies was mostly lacking. In 2007
a novel report from Hawaii listed 21 birth defects as being elevated after prenatal cannabis
exposure, particularly affecting the cardiovascular, gastrointestinal, urinary and chromosomal
systems and including arm defects, syndactyly and polydactyly however this study remained

very much an exception and outlier for many years [13].

In an historical case series of illicit poly-drugs users from Washington DC 148 pregnancies
amongst 140 women produced 12 embryos or infants with major congenital abnormalities,
43% had spontaneous first trimester abortions and four of eight serial pregnancies produced
infants or embryos with major abnormalities [14]. The major congenital anomaly rate was a
calculated by the authors at 96/1000 live births or 16 times the then control rate in USA in
1972 [14]. The usually quoted rate for spontaneous abortions at that time in USA was up to
20%. Of the eight infants whose major congenital anomaly was listed six had neural tube
closure defects (meningomyelocele, myelocele, spina bifida or hydrocephalus), one had a
cardiovascular defect (Tetralogy of Fallot), one had neuroblastoma and one had limb
abnormalities (absent feet, absent finger and absent phalanges from fingers). All patients
smoked cannabis [14, 15].

A report on atrial septal defect secundum type from the CDC database showing much higher
rates and a steep acceleration of the rate of increase of atrial septal defect in high cannabis
use states in the USA in recent years appeared which carried two major corollaries [16].
Firstly it implied that the list of cardiovascular anomalies jointly proposed by the AAP and
AHA was incomplete. Secondly it implied that our knowledge of the subject of clinical
cannabinoid teratogenesis including the list of cannabis-related congenital anomalies was

similarly incomplete.
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The concerning Hawaiian study has since been supported by studies from other locations.
Confirmation of the experimentally identified spina bifida and encephalocele findings
recently came from an analysis of Canadian data [17]. Indeed total congenital anomalies,
particularly including cardiovascular defects and chromosomal anomalies were recently
noted to be three times higher in the northern Territories of Canada which traditionally smoke
two to three times as much cannabis as Canadians living in the south [18]. An Australian
report showed that 18 congenital defects were higher in high cannabis using parts of Northern
New South Wales [19]. Colorado was noted to have a 29% jump in the expected rate of total
birth defects across the period of cannabis legalization 2000-2013 and included particularly
cardiovascular, central nervous system, genitourinary, musculoskeletal and chromosomal
CAs [20].

Cannabinoids including cannabidiol have been implicated in direct damage by oxidation to
DNA bases which is a major genotoxic and mutagenic lesion [21]. They have long been
known to be toxic to chromosomes which are the natural way in which DNA is packaged
inside the cell nucleus [22]. It was shown long ago that cannabinoids reduce the synthesis of
the major molecules of biology DNA, RNA proteins and histones [23-34]. Such gross level
changes necessarily impact the genomic code. Translated into a twenty-first century
understanding this would imply major interference in the epigenetic code where genome
accessibility, controlled by histone modifications, the formation of euchromatin and the
assembly of topologically organized transcriptionally active domains (the chromosomal “A
compartment”) within the nucleus constitutes a major portion of normal gene regulation, cell
function and indeed epigenetic cell specification and lineage determination [35]. And it has
been well established that cannabinoids carry a heavy epigenetic footprint which is

inheritable for several subsequent generations [35-41].

As was recently observed chromosomal toxicity, genotoxic and epigenotoxic lesions can
reasonably be expected to manifest in congenital anomaly profiles and patterns of
cancerogenesis [42]. What is clearly lacking in the literature is a genotoxic survey of a
national teratological database to study the issue of patterns of teratogenesis as they relate to
substance exposure. The application of the formal techniques of geospatial analysis and
causal inferential analysis to the whole database tracked by CDC of 62 birth defects is a

massive task which can only be commenced in this forum. It is therefore our purpose in the
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present paper to present an overview and introduction to this topic with a few teratological
case examples to illustrate the way in which such studies can be extended and the power of
these analytical techniques. Formal treatment of the whole field must be left for another
occasion. Since the required teratological and substance exposure and related data is

available for USA that nation has been chosen for the present investigation.

As has been pointedly observed it is vitally important in any review of teratological
epidemiology to consider the impact of early termination of pregnancy for anomalies
(ETOPFA) [43, 44]. Our study provides estimates of these ETOPFA practices which are

used to complete applicable datasets for affected congenital anomalies (CAS).

Given the rapid increase in the penetration of cannabis and cannabinoids into modern
American society, all studies related to cannabinoid teratogenesis and cannabinoid

genotoxicity must be regarded as urgent and of high priority in the national research agenda.

A related concern is the potential for cannabinoids to enter the food chain. Cases of babies
born without limbs have been noted in France and Germany where cannabis has become
widely available [45-50] however this has not been seen in nearby Switzerland where its
entry into the food chain is not permitted. Rapid introduction of cannabis into Colorado
recently was associated with a 29% jump in total congenital anomalies [20] and Kentucky
saw a massive and sharp spike in the incidence of atrial septal defect in recent years as

cannabis has increasingly replaced tobacco as a major cash crop [16].

Not since Distillers unleashed thalidomide on the global market in 1957 has an agent which is
known to be genotoxic been aggressively marketed for commercial reasons [51]. Of note the
thalidomide debacle was avoided in the USA primarily because of genotoxic concerns [52,
53]. This international tragedy of recent history is also the foundational reason for the
development of the modern drug regulatory scheme in many nations [53].

Aside from the fact of cannabis mutagenicity and genotoxicity itself one of the aspects of this
subject which we find of most concern is the clear replication in many predictive
geotemporospatial models of a sigmoidal relationship between cannabidiol and cannabinoid
exposure and teratogenic outcomes for many congenital anomalies which is clearly highly

reminiscent of the exponential dose-response relationships observed in numerous in vitro
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studies of cannabinoid genotoxicity and mitochondriopathy-epigenotoxicity [24, 26, 31, 54-
65]. It is the non-linear power function of dose-response between increased cannabinoid
exposure and teratological outcomes which must be of particular concern to any community
moving into a higher cannabinoid exposure zone. Equally of concern an exponential
relationship was observed in both actual and predicted modelled trend studies of the
relationship between cannabinoid exposure and US autism incidence [66]. Taken together
such findings imply exponentiation both of major neurotoxic and major genotoxic

developmental outcomes.

It is self-evident that with the endocannabinoids playing critical roles in many body systems
drugs modulating the endocannabinoid system will increasingly enter the international
therapeutic marketplace in the coming years. We also feel that in order to assist cannabinoid
therapeutics to find their appropriate niche in the global market that a proper understanding
and appreciation of their long term neurotoxic and genotoxic activities is an absolute
requirement both for regulators and for the public at large so that intergenerational

community safety continues to be prioritized as a central and principal concern.

The overall purpose of the present analysis was to investigate substance and particularly
cannabinoid exposure as a putative environmental risk factor for the observed spectrum of
congenital anomalies. This was done directly using ecological USA data in bivariate analysis
of continuous covariates. Key epidemiological parameters of public health interest such as
the prevalence ratio, the aetiological fraction in the exposed and the population attributable
risk were calculated from an analysis of categorized data. Detailed multivariable regression
was undertaken using inverse probability weighted mixed effects, robust and panel regression
for two selected CAs and spatiotemporal regression was also conducted for these CAs.
Extensive use of the formal techniques of causal inference namely E-Values and inverse
probability weighting was engaged to correct for the ecological fallacy and convert data into
a pseudo-randomized quasi-experimental design. Finally predictive mathematical modelling

was conducted to study overall trends of selected CAs as a function of cannabinoid exposure.

The minimum E-Value indicates the minimum strength of association required of some
extraneous confounder covariate with both the outcome of interest and the exposure of
concern to explain an observed assocation [67-69]. It plays a central role in formal

epidemiological assignment of causal relationships.
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An overview and survey of a geospatial consideration of the field of genotoxicity manifested

as cancerogenesis is the subject of a series of companion papers.
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Methods.

Data. Rates of birth defects were taken from the annual reports of the National Birth Defects
Prevention Network (NBDPN) 2001-2005 to 2011-2015 which is coordinated from the
Centres for Disease Control (CDC), Atlanta, Georgia. For the purposes of conducting the
analysis the nominal year of the report was taken as the temporal midpoint of the year of the
report. Hence for the most recent report we used which was 2011-2015 [70] the nominal year
for analysis was 2013. We analyzed all the major CAs collected long term by NBDPN across
this period totally 62 CAs. This was joined with annual USA state based drug use cross-
tabulation data from the National Survey of Drug Use and Health (NSDUH) Substance Use
and Mental Health Data Archive (SAMHDA) Restricted-Use Data Analysis System (RDAS)
maintained by the Substance Abuse and Mental Health Services Administration (SAMHSA)
[71]. The drugs of interest were last month cigarette use, last month alcohol use, last year
binge alcohol use, last year non-medical use of opioid analgesia (Analgesics), last month use
of cannabis and last year use of cocaine. Substance exposure was also considered as a
categorical variable. This was facilitated by establishing substance exposure quintiles for
each year with the first quintile representing the lowest exposure and the fifth quintile the
highest exposure. The cannabinoid concentration in Federal cannabis seizures was taken
from published reports of the Drug Enforcement agency [72-74]. Estimates of state level
cannabinoid exposure was derived by multiplying the last month cannabis use rates by the
Federal cannabinoid concentration. Quintiles for cannabinoid exposure were calculated

across the whole period as a single group.

Some CAs and those particularly affecting chromosomal defects are heavily impacted by
ETOPFA practice. The final ETOPFA rate by anomaly was arrived at as a composite
synthesis of several published ETOPFA rates [75-82]. Moreover, as defined in at least one
longitudinal annual time series of ETOPFA rates it seems highly likely that the ETOPFA rate
has been incrementally increasing over time [83]. In the longitudinal time series the
ETOPFA rate for Downs syndrome rose from low levels in 1980 to 70% in 2014. This
approximately linear rate of rise has been projected across all CAs according to the following

formula;

ETOPFA_Rate = Reported_Rate / (1 - (Composite * FMaxTR))
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where ETOPFA_Rate represents the adjusted CA rate, the Reported_Rate is the gazetted rate
reported by NBDPN, the Composite rate is the composite rate derived from literature review
shown in Table 1 and the FMaxTR is the Fraction of the Maximal Termination Rate in the
year in question given in Supplementary Table 1 which is a tabular representation of
graphical data taken from the only longitudinal series of ETOPFAs in the world we were able
to identify [83].

Median household income and ethnicity data by state and year was sourced using tidycensus
package [84] in R directly from the US Census bureau including linear interpolation for
missing year data. The main ethnicities which were tracked included: Native Hawaiian /
Pacific Islander (NHPI), American Indian / Alaska Native (AIAN), Asian-American,
Hispanic-American, African-American and Caucasian-American. Cannabinoid concentration
data in USA at the Federal level was taken from published reports of the US Drug
Enforcement Agency (DEA) [72-74]. The five cannabinoids of interest were A9-
tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN),
and cannabichromene (CBC). Federal cannabinoid concentration was multiplied by state

level cannabis use to compute an estimate of cannabinoid exposure in each state.

Statistical Analysis. Data was processed in R-Studio version 1.3.1093 (2009-2020) based
upon R version 4.0.3 (2020-10-10). The decision to log transform covariates was guided by
the results of the Shapiro-Wilks test. Data manipulation was with the “dplyr” package from
the “tidyverse” suite [85]. Graphs were drawn using tidyverse “ggplot2” and maps were
drawn in R-Base, “sf” (simple features) [86] and with ggplot2 [85, 87]. Colour palettes used
both the plasma and viridis palettes from R-package “viridis” [88] and original specially
created custom colour palettes. Bivariate maps were drawn with the two way colour matrices
from R package “colorplaner”[89]. All maps and graphs were drawn specially for this report
and are thus original. A new version of package “epiR” was specially developed for this
project to allow the large integers involved to be processed. epiR is developed by Mark
Stevenson and his colleagues [90]. Professor Stevenson was extremely kind and developed
two new versions so that the present work could proceed. We were therefore able to utilize
version epiR 2.0.11 in this work. epiR was used to calculate prevalence ratios, attributable
fraction in the exposed, population attributable risks and significance levels along with their
confidence intervals. R package “mgcv” was used to compute general additive models

(GAM). Model comparison was with the Anova test from R-base.
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Regression models. Linear trends were computed directly using linear regression from R-
Base. The R-package “nlme” [91] using state as the random effect was used for repeated
measures mixed effects regression. The R “survey” [92] package was used to conduct robust
generalized linear regression and state was again used as the identity variable. The R-
package “plm” was used to conduct panel regression with a space-time method [93]. For all
regression formats model reduction was practised by the canonical method of the sequential
manual deletion of the least signifcant term.

Geotemporospatial regression was conducted in the “splm” (spatial panel linear modelling)
package [94] using the spreml (spatial panel random effects maximum likelihood) function.
The R-package “spdep” [95] was used to compute spatial weights matrices describing the
spatial relationship between states which was defined as edge and corner (“queen”)
relationships and edited as described. Geospatial model specification was by the reverse
method as described [96]. In full spatial panel random error maximum likelihood

(spreml) models four spatial coefficients are calculated as phi, psi, rho and lambda for the
random effects, serial autocorrelation effects, spatial coefficient and autocorrelation of the
spatial coefficients respectively [97]. In reverse model specification one deletes from the full
model (error = “semsrre” + lag) those model error terms which are not significant [96]. This
was the method used herein. Such procedures allow for fine control of the formal treatment

of the model error terms.

Different forms of regression were employed for the following reasons. Mixed effects
models have the advantage that repeated measurements can properly be considered from the
same region. Inverse probability weighting is not possible in spatial models but can be
performed in mixed effects, robust and panel models. Panel, mixed effects and spatial
models allow the calculation of model standard deviations so E-Values can be computed
from such models. Lagging cannot be used in mixed effects or robust models but can be
applied in panel and spatial panel models. Instrumental variables can be employed in panel
models but are not yet implemented for spatial panel models. In addition to allowing for
formal consideration of spatial and temporal factors spatial panel models allow the use of
both spatially and temporally lagged variables as well as spatially and temporally lagged
variables considered simultaneously. It was therefore felt that by using several different

types of regression the major results could be verified by several alternative methods.
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Simultaneous multiple linear model analysis was conducted using the package “purrr” from
the tidyverse [85] and tidy and glance from package “broom” [98] using established nest-
map-unnest workflows. This recently developed and powerful technique allows the analysis
of a whole long dataset providing data on all defects to be conducted by linear modelling in a

single analysis run.

Causal inference. Two powerful techniques of formal causal inference were employed.
Firstly inverse probability weighting (IPW) was included in all robust, mixed effects and
panel models which had the effect of equilibrating exposure across all observed groups. This
has the effect of pseudo-randomizing various exposures and allowing causal inferences to
properly be drawn. The R-package “ipw” [99] was used to calculate inverse probability
weights. Secondly the R-package “EValue” was used to compute E-values from both count
data and from regression model outputs using the parameter estimate, its standard error and
the standard model deviation [67, 68, 100]. E-Values were computed for regression models
and for the predicted output from fitted models [67, 69, 101]. E-Values were calculated for
panel, mixed effects and spatial panel models. It is noted in the literature that E-Values

above 1.25 are indicative of causal relationships [67].

Predictive Spatial Modelling. Selected spatial panel models were chosen for predictive
analysis as discussed in the text. Included in spatial panel (spreml) model objects is a vector
of model predicted values ($fitted.values). Matrix multiplication was used to multiply 101
vectors, comprising percentiles zero to 100 of exposure to cannabidiol by the model
parameter coefficients to produce a vector of model predicted values. Other terms were set at
their mean value and the coefficient for the intercept was one. In each case the resulting
predictions were outside and below the range of the NBDPN reported defect incidence, which

was unsurprising as the models themselves included both log and lag terms.

The z-transformation is often used in statistics to adjust variable distributions and facilitate
comparison between variables. Subtracting the mean of a data series from the values and
dividing by the standard deviation of that dataset will transform it to have a mean of zero and
a standard deviation of 1. This is the z-transformation which is widely used in statistical
analysis. In the present case an extended z-transformation procedure was performed whereby

the mean of the data series for the anomaly rate was added to the mean after z-transformation
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and the new standard deviation was set at the ratio of the median of the raw data series to the
median of the fitted values from the model under consideration. The final scaling conversion

formula may therefore be represented as follows:

Recalibrated_Result =
((Res-mean(Res)) / ((sd(Res))/ (sd(FVV) * (median(SPDSST$DefxRt) /
median(FVV))))) + (mean(SPDSST$DefxRt))

where Res is the raw results from matrix multiplication, mean is the average, sd is the
standard deviation, median is the median, SPDSST is the spatial panel space-time dataset for
the congenital anomaly concerned, FVV is the fitted values from the spatial panel model,
DefxRt is the observed rate for the congenital anomaly under consideration as reported by
NBDPN, and $ is a placeholder for the dataframe indicating the variable name. The analysis
of the model predictions which are reported were performed on the Recalibrated Results after

application of the extended z-transformation conversion formula noted above.

P<0.05 was considered significant throughout.

Data availability. Data, including R-code, spatial weights, ipw weights and main source

datasets has been made freely available through the Mendeley Data repository online and can
be accessed at http://dx.doi.org/10.17632/w6ks529sxd.1 .

Ethics. The University of Western Australia Human Research Ethics Committee granted
ethical approval for this study on 7 January 2020 RA/4/20/7724.
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Results

This section is set out in three sections. First we examine bivariate continuous associations.
We then calculate key epidemiological parameters of interest from categorization of key
exposure variables. We then demonstrate how inverse probability weighting can be
employed in multivariable regression models and also use spatiotemporal models to
investigate causal relationships formally and in a space-time context as an analytical pathway
proof of concept for subsequent detailed studies across all congenital anomalies.

18,328,529 births occurred in USA in the eight nominal years 2005-2013. 2008 was omitted
as CA data was not available for that year. The cumulative aggregated population of the
USA for these eight years year-on-year was 2,377,483,589. 12,611 birth defect rates relating
to 62 birth defects in the 50 states of the USA were extracted from the published reports of
the National Birth Defects Prevention Network which is coordinated by the CDC. The
defects of interest are listed in Supplementary Table 1. The period of interest was 2005-2013
as that period could be related to drug and substance exposure data from the NSDUH from
SAMHSA. Since NBDPN reports are issued for quinquennia this report comprehends the
NBDPN reports from 2003-2007 to 2011-2015.

It is well known that several congenital anomalies are actively sought out by active antenatal
screening programs. Some of these are subject to indications for early therapeutic
termination of pregnancy for anomaly (ETOPFA). In considering the likely rate of
congenital anomalies it is important to take this effect into consideration. Supplementary
Table 1 also lists the ETOPFA rates from various published series [72-74]. Series were
selected for their breadth of coverage of multiple congenital anomalies. The right hand
column lists the ETOPFA rates applied in the present work which were a composite of these
series. This estimate of the ETOPFA-corrected rate was a dependent variable of interest in
some of the present analyses. Supplementary Table 2 shows the time-dependent progression
of the only longitudinal series of ETOPFA’s we were able to identify which was the Down
Syndrome ETOPFA rate in Western Australia [83].

Continuous Bivariate Exposure Survey
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Figure 1 shows the time dependent trajectories of these various CAs corrected for estimates
of ETOPFA.

Figure 2 shows the substance exposure trends over this time period. Data was taken from the
nationally representative annual SAMHSA NSDUH which reports a 74.1% response rate
[102].

Figure 3 shows the annual estimated cannabinoid exposure for state level data estimated from
Federal data from the DEA relating to cannabinoid concentrations in drug seizures and the
state level last month cannabis consumption. Rising trends are noted for all cannabinoids

except cannabidiol which is declining.

Figure 4 shows the relationship of the various ETOPFA-corrected CA rates (ETOPFACAR)

to tobacco exposure. As is expected many show a rising and positive relationship.

Supplementary Figure 1 shows the relationship of the ETOPFACAR estimates to binge

alcohol exposure. Mostly weak or negative relationships are demonstrated.

Supplementary Figure 2 shows the relationship of the ETOPFACARSs to last month alcohol

use. Similar appearances are seen.

Moving to Figure 5 and considering the relationship of ETOPFACARS to cannabis exposure
the pattern changes dramatically from weak associations to many clearly strongly positive
and apparently highly significant associations.

Figure 6 shows the relationship of the ETOPFACAR to THC exposure. Many of these
relationships are clearly positive and highly significant.

Figure 7 shows the relationship of the ETOPFACARS to state level estimated cannabidiol

exposure. Some relationships appear to be positive, particularly in the top line of CAs.

Supplementary Table 3 provides details of the slopes of the ETOPFACARs over time. The
table was produced using the purrr-broom package combination in R using the nest-map-

unnest workflow whereby multiple linear models can be processed simultaneously for each
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CA. The table lists the model B-estimates, the t-values and various model statistics. Lastly
the table lists the point estimates of the E-Values for these regression lines together with the
95% lower bound of the E-Value.

Table 1 performs a similar function for tobacco exposure. One notes that in this table 12
ETOPFACARSs have minimum E-Values greater than 1.00.

Supplementary Table 4 performs the same function for binge alcohol exposure. Only two
ETOPFACARSs have elevated minimum E-Values in this table which are cleft lip alone and

epispadias.

Supplementary Table 5 performs the same function for last month alcohol exposure. Here six
ETOPFACARSs have elevated minimum E-Values.

Contrariwise Table 2, which illustrates the relationship of the ETOPFACARSs with cannabis
exposure, contrasts sharply with Table 5. In Table 6 one notes that 35 ETOPFACARSs are
shown to have elevated minimum E-Values. These pertain particularly to cardiovascular
system (9 anomalies), urinary tract (6 anomalies), gastrointestinal tract (five anomalies), all
five chromosomal anomalies, four musculoskeletal or limb development anomalies (club
foot, congenital hip dislocation, limb reduction deficiencies and leg reduction deficiencies),

two anomalies each of face and body wall, and one anomaly of brain development.

Supplementary Table 6 performs the same function for estimated THC exposure. In this
table 40 ETOPFACARSs have minimum E-Values greater than 1.00. Chromosomal and
cardiovascular defects are particularly featured but microtia, limb and leg reduction defects,
club foot, gastroschisis, omphalocele, anencephalus, spina bifida, esophageal atresia, small
and large intestinal stenosis or atresia and obstructive genitourinary defects and congenital

posterior urethral valves also feature.

As shown in Table 3 the list of ETOPFACARSs with minimum E-Values greater than 1.00 is
shorter for cannabidiol. Eleven defects are featured which are in order: congenital dislocation
of the hip, small intestinal stenosis or atresia, biliary atresia, obstructive genitourinary defect,

large bowel atresia or stenosis, Hirschsprungs disease (congenital megacolon), esophageal
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atresia, diaphragmatic hernia cleft palate, reduction deformities of the legs and transposition

of the great vessels.

Hence from this series of data we note that the sequence of teratogens is THC (40 CAs) >
cannabis (35 CAs) > tobacco (11 CAs) > cannabidiol (11 CAs) > monthly alcohol (5 CAs) >
binge alcohol (2 CAs).

To aid with understanding and comparison these minimum E-Values are also presented
graphically using a log scale. A horizontal line marks the literature described cut-off for
causality at (log) 1.25 [67]. Supplementary Figure 3 shows the minimum E-Values for
ETOPFACARs over time.

Figure 8 lists the E-Values by CA for those ETOPFACARSs which reported elevated finite

minimum E-Values for tobacco.

Supplementary Figure 4 and Figures 9-12 do this for binge alcohol, last month alcohol,
cannabis, THC and cannabidiol exposure respectively. One notes that the graph for THC

clearly has more defects listed.

Categorical Exposure Survey

Exposure data was categorized to allow the calculation of key parameters of public health
interest such as the prevalence ratio, the aetiological fraction in the exposed and the

population attributable risk.

In the following categorical analysis the data was taken from the raw unadjusted NBDPN
rates themselves i.e. ETOPFACARSs were not used in this series.

Figure 13 shows boxplots by CA and contrasts the highest and lowest quintiles of cigarette
exposure by CA listing them in the order of the decreasing ratios between the highest and

lowest quintiles.
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Supplementary Figures 5-8 and Figures 14 and 15 do this for binge alcohol, last month
alcohol, analgesic, cocaine, last month cannabis and cannabidiol exposure. Cannabidiol

quintiles in Figure 21 are not grouped by year but calculated across the whole period.

Supplementary Table 9 presents the numbers born with and without CAs in the highest and
lowest quintiles of tobacco use states. The Prevalence Ratio (like the Odds Ratio for cohort
studies), Attributable Fraction in the Exposed (AFE), the Population Attributable Risk (PAR),
the Chi Squared value and the P-level of significance is also shown. The right most columns
show the point estimate for the E-Value together with its 95% lower bound. In this Table 26

defects are noted to have minimum E-Values elevated above 1.00.

Supplementary Tables 7-14 perform a similar function for binge alcohol, analgesics, cocaine,
cannabis and cannabidiol respectively. As the CAs tracked by NBDPN / CDC changed over
time as the cannabidiol exposure was falling 11 defects have no entries in Quintile 1 (see
Figure 23 for details). Numbers exposed in Quintile 2 were used for these CAs. In these five
tables one notes respectively that 1, 21, 27, 10 and 11 CAs demonstrate elevated minimum E-
Values. These data suggest that cannabis (21 defects) is the third most important teratogen
behind analgesics (27 CAs) and tobacco (26 CAs). Teratogenesis from cannabidiol also

appears to be significant (11 CAs).

As shown in Table 4 six cardiovascular anomalies, five chromosomal, five gastrointestinal,
two urinary, two limb, and one each facial (Holoprosencephaly), body wall (Diaphragmatic
hernia) and CNS (spina bifida without anencephalus) anomaly are accompanied by higher E-
Values in the high cannabis use quintiles. Interestingly both congenital posterior urethral
vales and diaphragmatic hernia and several gastrointestinal anomalies appear both on this list
and on the list of elevated E-Values shown in Table 2 where cannabis exposure is treated as a

continuous covariate.

As indicated in Table 5 12 anomalies including three cardiovascular (pulmonary valve
atresia, double outlet right ventricle, single ventricle), three gastrointestinal (small intestinal
atresia /stenosis, biliary atresia, cloacal extrophy), two chromosomal (Trisomies 14 and 21)
and one each limb (clubfoot), body wall (diaphragmatic hernia), face (cleft lip with and
without cleft palate) and genitourinary (obstructive genitourinary defect) anomaly were noted

to have elevated minimum E-Values in highest cannabidiol exposure quintiles.
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For ease of comparison these Prevalence Ratios are presented together by substance in Table
6. The prevalence ratios for cannabidiol appear in the right hand column and are listed in
descending order.

Table 7 presents the Attributable Fractions in the Exposed (AFES) in a similar manner. One
notes that they descend from a strikingly high rate of 79.38% for cloacal extrophy after

cannabis exposure.

Table 8 performs a similar function for Population Attributable Risk (PAR). Cloacal
extrophy again heads the list from a PAR of 56.75% after cannabis exposure.

Applicable P-values are listed together by substance in Table 9. In reading this table it
should be noted that P values in R are only computed down to 2.2x10°%. Such values in the

table may be better understood as zeroes.

Minimum E-Values for these comparisons are shown in Table 10 by substance.

Summary of Bivariate Analyses

Given that the above tables present a lot of information it is of interest to distil this

information down into more intellectually digestible components.

Supplementary Table 11 extracts the 85 ETOPFACARs which have significant E-Values for
the 35 cannabis related CAs, the 40 THC related CAs and the 11 cannabidiol CAs considered
as continuous variables. The table is arranged in descending order of the lower bound of the
E-Values. 37/85 E-Values are greater than 9.0 which is the E-Value for the tobacco-lung
cancer relationship and 84/85 are greater than 1.25 which is the quoted cut-off for causality
[68].
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Table 11 re-lists the 41 CAs listed in Table 20 and retains only the ETOPFACAR with the
highest minimum E-Value. In this table 28/41 are greater than 9.0 and 40/41 are greater than
1.25. On this list 28 CAs are related to cannabis, 5 to THC and 8 to cannabidiol.

To further condense this material Table 12 lists the organ systems of the various CAs listed in
descending order of the percentages of the listed CAs for that organ system. It is noted
immediately that the list is headed by chromosomal disorders, but that genitourinary,
gastrointestinal, limb defects, body wall defects, cardiovascular anomalies and facial
anomalies all have more than 50% of their listed CAs positively and potentially causally

associated with one of the various cannabinoids.

Table 12.: Summary Continuous Variables by System

System No. . Total N_o. % of To_tal

Anomalies | Anomalies | Anomalies
Chromosomes 5 5 100.0%
GUT 6 7 85.7%
GIT 5 6 83.3%
Limb 4 5 80.0%
Body Wall 2 3 66.7%
CVS 11 19 57.9%
Face 5 9 55.6%
CNS 3 7 42.9%
Total 41 61 67.2%

A similar exercise can be performed on the CARs (not corrected for ETOPFAS) treated as
categorical variables comparing the highest Quintile (Quintile 5) with the lowest quintile
(Quintile 1, or the absence of data, Quintile 2).

Supplementary Table 12 shows selected parameters from this comparison extracted for those
31 CARs with elevated minimum E-Values listed in descending order of E-Values. 21 of

these CARs are related to cannabis and 12 are related to cannabidiol.
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Table 13 removes the duplicates from these CARs and retains the most significant results

leaving 23 CARs, 17 related to cannabis and 6 to cannabidiol.

Table 14 lists these various CARs by body system. The results are qualitatively similar to

those presented in Table 22 but less dramatic.

Table 14.: Summary Categorical Variables by System

System No. _ Total N_o. % of To_tal
Anomalies | Anomalies | Anomalies
Chromosomes 5 5 100.0%
GIT 5 6 83.3%
GUT 3 7 42.9%
Limb 2 5 40.0%
Body Wall 1 3 33.3%
CVS 5 19 26.3%
Face 2 9 22.2%
CNS 0 7 0.0%
Total 22 61 36.1%

Detailed Analyses of Specific Congenital Anomalies

It is of interest to consider two of these defects in detail by way of example of the kinds of
space-time analyses which might be performed to investigate these data in greater detail.
This brief analytical discussion is intended to be exemplary rather than exhaustive as a
thorough spatiotemporal treatment of all of this material would require a very large
undertaking indeed beyond the bounds of the space which is presently available.
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Small Intestinal Stenosis and Atresia (SISA).

We look first at small intestinal stenosis and atresia (SISA). Figure 16 presents map-
graphically the states which provided data for this analysis. SISA is not diagnosed prenatally
and is not impacted by ETOPFA practices.

Supplementary Table 13 presents the results of final inverse probability weighted mixed
effects models. Interestingly one notes that in these models cannabis and / or cannabinoids
are significantly related to SISA incidence. Importantly cannabidiol is independently

significantly related and has a positive coefficient in all models in which it appears.

Supplementary Table 14 presents final inverse probability weighted robust generalized linear
regression models. Cannabis is significant alone. When all the substances are included in an
additive model, only cannabis remains as shown in the second model on this page. In an
interactive model with drugs cannabis is again independently significant. In comprehensive
additive and interactive models including income and all ethnicities, significant terms

including cannabidiol appear in both final models.

Supplementary Table 15 presents the results of inverse probability weighted panel regression
models lagging cannabinoids. In both additive and interactive models terms including

cannabidiol are significant and have positive coefficients.

States contributing data to the SISA dataset are shown in Supplementary Figure 9 along with
their edited geospatial linkages.

Table 15 presents the results of final geospatial models. Terms including cannabis are

positive and significant in all cases.

Table 16 shows the results of final geospatial models looking at substances using the
cannabinoids as covariates. In all cases terms including the cannabinoids are significant. In
models lagged at one, two and three years terms including cannabidiol are significant and the

coefficients positive.
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Table 17 presents a similar analysis this time including all income and ethnicity covariates.
In each model terms for the cannabinoids are positive and significant. In each model terms

including cannabidiol are also positive and significant.

Table 18 collects some of the regression terms from earlier tables and presents their
applicable computed E-Values for the inverse probability weighted mixed effects and panel

models.
Table 19 performs a similar role for regression terms derived from geospatial models.

Supplementary Table 16 lists all 57 of these minimum E-Values in descending order. All 57
are noted to be above the threshold of 1.25, 34 are noted to be greater than 100 and 13 are

infinite.

It is of interest to consider predicted values from geospatiotemporal models. For this purpose
the comprehensive interactive model shown in Table 25 lagged to two years was chosen.

The 101 predicted percentile values from matrix multiplication and scale adjustment are
shown graphically in Figure 17 with least squares regression lines, cubic polynomial and
GAM curves are fitted. Percentiles refer to percentiles of cannabidiol exposure.
Supplementary Table 17 presents the comparison of the ninetieth and tenth percentiles, the
95™ and fifth percentiles and the first and 99™ percentiles. An increasing ratio is noted in the
right hand column consistent with an increasing effect at higher doses, and the obvious
upwards inflection point on the fitted curve.

Supplementary Table 18 presents concisely the results of the various linear, polynomial and
GAM regressions. At Anova testing the cubic curve is noted to have a superior fit to the least
squares regression line (Anova: F = 365.64, df = 2, 97, P = 7.86x10 *") and the GAM is also
noted to have a superior fit to the least squares line (Anova: F = 265.91, df=7.89, 91.11, P =
2.83x10°°). The GAM model was superior to the cubic model (Anova: F = 23.096, df =
5.85, 93.15, P = 3.37x10™%).

Supplementary Table 19 presents the E-Values which are applicable to these linear regression

results. The minimum E-Values are noted to range up to 1.73x10%.
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As mentioned the abscissa of this regression study was percentiles of cannabidiol exposure.
When percentiles of the three cannabinoids THC, cannabigerol and cannabidiol were used
instead similar results were obtained particularly with relation to strongly sigmoidal modelled

trends (results not shown).

Obstructive Genitourinary Defects

Figure 18 illustrates states contributing data to the obstructive genitourinary disorder
(OGUD) dataset. This disorder is diagnosed prenatally but is not subject to ETOPFA

practices.

Supplementary Table 20 presents final inverse probability weighted mixed effects models.
Interestingly cannabis is again shown to be the only remaining term in the final additive
model for drugs. In the last two models on the comprehensive dataset, the effect of
cannabinoids is strongly positive. In the final comprehensive interactive model two

significant terms include cannabidiol and have positive B-coefficients.

Final inverse probability weighted robust generalized linear regression models are presented
in Supplementary Table 21. In the final comprehensive interactive model shown in this
Table two terms for cannabidiol are strongly positive at high levels of statistical significance.

Final comprehensive inverse probability weighted panel regression models for cannabinoids

are shown in Supplementary Table 22. Many positive terms for cannabinoids are noted.

Supplementary Figure 10 illustrates the geospatial linkages which were derived and edited for
the OGUD dataset.

Table 20 presents the results of final geospatiotemporal models for OGUD incidence. One
notes that cannabis alone is highly signifcant. In an additive model limited to substance
covariates, cannabis was the only remaining significant term in the final model. At two years

of lag cannabis was again the most significant term. The overall effect of cannabis in this
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model was positive. The effects of THC, cannabigerol and cannabidiol considered separately

were positive in each case.

Table 21 shows the results of spatial and temporal lagging of cannabinoids. Several terms

positive for cannabinoids are evident.

Table 22 lists final comprehensive interactive and interactive temporally lagged models. All

models include positive significant terms for cannabinoids.

Table 23 lists the E-Values derived from mixed effects and panel regression models and

Table 24 shows those derived from spatiotemporal models.

These 47 E-Values are listed in descending order in Supplementary Table 23. All 47 are

noted to be above 1.25, 36 are noted to be above 100 and nine are noted to be infinite.

It is of interest to consider the way in which rising levels of cannabidiol might impact these
results. The model chosen was the first comprehensive interactive model shown in Table 42.

Percentiles refer to percentiles of cannabidiol exposure.

The results of matrix multiplication and scale revision are shown in Figure 19 with least
squares regression lines, cubic polynomial and GAM curves fitted. Percentiles are compared
in Supplementary Table 24 and one again notes an increasing ratio reflecting the obvious
inflection points in the fitted curves. Regression summaries for these three smoothers are
shown in Supplementary Table 25. At Anova testing both the cubic polynomial (Anova: F =
499.86, df = 2, 97, P = 5.82x10™") and the GAM curve (Anova: F = 172.08, df = 7.7934,
91.207, P = 1.61x10™) are noted to be superior to the least squares regression line

confirming the significance of the inflection points in the curves.

The E-Values from the two linear regression models are shown in Supplementary Table 26
and their minima are noted to range up to 8.36x10*" in the case of the cubic polynomial

curve.
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When this exercise was repeated for this congenital anomaly including percentiles of THC
and cannabigerol in addition to cannabidiol exposure, again the sigmoidal non-linear shape of

the fitted curve was strongly confirmed (results not shown).
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Discussion

Main Results

The overall picture to emerge from this national state level survey of cannabinoid
teratogenesis confirms and extends the Hawaiian study of 2007 [13] in preference to the
“standard model” of cannabinoid and cannabidiol teratogenesis widely canvassed in the
medical profession. These findings support the genotoxic warnings placed by national

regulatory agencies on approved cannabinoid products including cannabidiol.

The main outcome from this USA teratological survey and overview is that cannabis, THC,
cannabidiol and cannabigerol have highly significant associations with congenital anomaly
rates whether considered as continuous variables by regression line slope or categorical
variables by comparing extreme quintiles and are accompanied by highly significant
prevalence ratios, attributable fractions in the exposed, population attributable risks,
significance levels and E-values. For the continuous variable analysis 28 of the 41 CAs listed
in Table 11 have minimum E-Values greater than 9.0 which is the very high value found in
the tobacco-lung cancer relationship [103]. As judged by the number of ETOPFACARS
impacted this putative teratogenic effect is greater for THC (40 CAs) than for cannabis (35
CAs) than for tobacco (11 CAs). For cannabidiol (11 CAs) this effect is greater than either
last month alcohol consumption (5 CAs) or binge alcohol consumption (2 CAs). For two
CAs considered in detail by spatiotemporal analysis and the formal techniques of causal
inference, namely small intestinal stenosis or atresia and obstructive genitourinary defects,
there is clear epidemiological evidence of both close association across time and space which
persists after full model adjustment, and of a causal relationship with cannabinoid including
cannabidiol exposure. Moreover predictive modelling from selected spatiotemporal models
demonstrates that the relationship between rising cannabidiol exposure and CA incidence is
strongly sigmoidal in that both fitted curves show obvious strong positive inflections in their
upper ranges which is closely and strongly reminiscent of the exponential dose-response
curves observed in the laboratory in numerous genotoxic and mitochondriopathic assays [21,
24,26, 31, 42, 54-65, 104]. P-values for this non-linearity are 2.83x10°° and 1.61x10 ™
respectively. For these CAs minimum polynomial E-Values for the predictive percentile
models range up to 1.73x10% and 8.36x10*.
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The slope of the bivariate relationship between estimates of the ETOPFA-corrected CA
incidence rate and the rate of substance exposure for many anomalies is significantly elevated
for cannabis, THC and cannabidiol. As shown in Table 2 35 ETOPFA-corrected congenital
anomalies have elevated minimum E-values by cannabis exposure regression slope which
comprise nine cardiovascular anomalies, six anomalies of the urinary tract, five anomalies of
the gastrointestinal tract, all five chromosomal anomalies, four limb musculoskeletal
anomalies, two each of face and body wall anomalies and one brain anomaly. For 28 of these
35 anomalies the minimum E-Value is greater than 9.0. The forty CAs with elevated E-
values after THC exposure may be grouped as ten cardiovascular CAs, six gastrointestinal
CA:s, six CAs of the urinary tract, all five chromosomal CAs, five CAs of the facial
structures, four CAs of limb development including limb deficiencies and leg reductions, two
central nervous system CAs including encephalocele and spina bifida without anencephalus,
and two CAs of the body wall development diaphragmatic hernia and omphalocele

(Supplementary Table 6).

The twelve ETOPFACARSs with elevated E-Values from regression slopes after cannabidiol
exposure include small and large intestinal esophageal and biliary atresias and stenoses, hip
dislocation, obstructive genitourinary anomalies, and diaphragmatic herniae, cleft palate,
reduction deformity of legs and transposition of the great arteries. Obstructive genitourinary
defect, esophageal, small and large intestinal and biliary atresias and stenoses, diaphragmatic
hernia, Hirschsprungs disease and hip dislocation have elevated E-Values when cannabidiol
is considered as both continuous and categorical variables (Tables 3 and 5). For nine of these
12 CAs the minimum E-Value is greater than 18 (Table 3).

Tables 2 and 4 list the CAs with elevated E-Values when cannabis is treated as a continuous
and as a categorical variable respectively. The defects which appear on both lists are the
chromosomal anomalies Trisomies 13, 18 and 21 (Downs syndrome) and Deletion 22911.2;
the gastrointestinal anomalies esophageal atresia, small intestinal atresia or stenosis, biliary
atresia and Hirschsprung disease; the cardiovascular defects hypoplastic left heart syndrome,
coarctation of the aorta and pulmonary valve atresia or stenosis; the limb defects congenital
hip dislocation and clubfoot, the body wall defect diaphragmatic hernia, and the urological

disorder congenital posterior urethral valve.
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Interpretation

Hence these data show not only close association between cannabinoid exposure and various
CAs but clearly indicate the existence of a threshold effect above which the teratogenic
impact dramatically increases, closely mirroring in patterns of human disease the amply
documented threshold effects seen in cellular, molecular, genotoxic and epigenotoxic
laboratory studies [21, 24, 26, 31, 42, 54-65, 104].

The present study is intended to be introductory and pathfinding in the sense that its methods
are not widely deployed across the published literature of the clinical teratological disciplines
and we are keen to see advanced statistical methods more widely utilized to study the
important questions raised by this study. However it is also true that sufficient evidence has
been presented in the above material to enable several conclusions to be made definitively.
Cannabinoid genotoxicity as tracked across multiple congenital anomalies is clinically
significant and of public health importance and concern. Cannabis and cannabidiol test
strongly positive on the bivariate results presented and are each implicated in more congenital
anomalies than either tobacco or alcohol respectively both legal drugs which are widely
acknowledged to be toxic to the developing foetus. Based on the very elevated minimum E-
Values ofound cannabidiol is also a clinically significant teratogen and presumptive
genotoxin and is more potent than either binge alcohol consumption or last month alcohol
use. For selected congenital anomalies cannabinoid teratogenicity persists after multivariable
adjustment in inverse probability weighted models of causal inference, and after
consideration in their inherently space-time context. For both congenital anomalies studied
in detail spatiotemporal modelling shows strong evidence of a threshold effect above which
the impacts of cannabidiol and cannabinoid teratogenicity are supra-linear, sigmoidal and

greatly amplified.

These findings lead to the sobering conclusion that cannabinoid genotoxicity is of great
public health importance to maternal-foetal and reproductive medicine in contrast to the fact
that it appears to be largely missing from public health discourse to date where it is

essentially overlooked.
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Moreover given that the prevalence of cannabis use and cannabinoid exposure in the global
community is clearly rising increasing cannabinoid exposure will not be related in simple
linear fashion to increased congenital anomalies across a wide spectrum of developmental
disorders, but the non-linearity of the relationship and the existence of clear thresholds for
genotoxicity both in the laboratory and across diverse human communities (in USA as a
whole and in Hawaii, Colorado, Canada and Australia [13, 17-20]) implies that a much
greater incidence of clinical teratogenesis might reasonably be expected to accompany this
increased use, as was indeed recently demonstrated nationwide in USA for atrial septal defect
secundum type [16] and for autism [66, 105] and has also recently been demonstrated in
Canada and Australia [17-19]. This was also recently confirmed for all five chromsomal

disorders reported across USA [106].

The present report is preliminary in the sense that a wider detailed geotemporospatial and
causal inference study of many other congenital anomalies is clearly indicated. At the time of
writing this more comprehensive and detailed manuscript is in preparation. Our unpublished
findings are that such upper range predicted curve positive inflections and sigmoidality are
typical and normative amongst geospatial models for almost all positively impacted
congenital anomalies studied to date. Also strongly indicated are geotemporospatial studies
at finer geospatial resolution such as was recently published from CDC for gastroschisis at
county level and which employed similar prevalence ratio methodology to the present study
[107].

One notes also that the USA is moving relatively rapidly into an era when cannabinoids are
more widely available than previously as the legislative regimes relating to cannabis are
progressively relaxed. The replacement of tobacco crops in many places with hemp crops
implies that cannabinoids of various forms will increasingly enter the food chain both
explicitly as lollies, candies, chocolates, sauces, health foods and oils, and implicitly as stock
feed, bird feed and in dairy and egg products. It therefore seems inevitable in such a
paradigm that population level cannabinoid exposure will necessarily increase. In this
context the traditional way of doing teratological studies by simply asking a binary question
as to maternal antenatal exposure to cannabis becomes increasingly inaccurate and passé.
Calls for a quantitative biomarker of cannabinoid exposure have been issued derived
potentially from epigenomic and / or glycomic metrics [108]. As we enter an era of more

widespread known and unknown cannabinoid exposure in the community, higher level



952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984

Page |32

cannabinoid potency, higher intensity cannabis use and the widespread availability of highly
concentrated cannabinoid oils, dabs, waxes, shatters, extracts and products it seems that the
urgency of deriving such a quantitative biomarker necessarily proportionately increases. An
important corollary of the deployment of such an objective biomarker is that much smaller
numbers of maternal-foetal pairs can be used to measure effect sizes and the chance of mis-
attribution is potentially greatly reduced with the added advantage for analysis and for
statistical power that cannabinoid exposure can be treated more properly as a continuous

variable.

Mechanistic Considerations

Role of Morphogen Gradients in Body Pattern Formation

The gradients of various key morphogens control of the formation of the body in many
respects [109]. This is well illustrated in the case of the neural tube which goes to form the
spinal cord and central nervous system. Bone morphogenetic proteins and Whnts are released
from the dorsal roof plate region in high concentration. Sonic hedgehog (shh) is released
form the notochord and induces shh release form the ventral floorplate of the neural tube in
high concentration [109]. Hence between the dorsal roof plate and the ventral floor plate
there exist opposing and antagonistic gradients from BMPs and Whnts dorsally as against shh
ventrally. Shh suppresses class | factors (Pax-3/7, Dbx-1, Dbx-2, Irx3 and Pax-6) and
stimulates class Il factors (Foxa-2, Nkx-6.2, Nkx-6.1, Olig-2, Nkx-2.2 and Nkx-2.9). These
opposing gradients specify in detail the nature of the neurons which will develop in the
various loci of the developing neural tube. At the same time lateral gradients of retinoic acid
emanate from the lateral edges of the neural tube descending to very low concentrations
along the lumen of the neural tube. Rostral-causal axial differentiation is controlled by
opposing gradients of retinoic acid rostrally competing with FGF and Glil from the caudal
end of the neural tube [109].
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Hence in a very real way one could say that the structures of the neural tube are actually
woven together by opposing and antagonistic but balanced morphogen gradients. Similar
principles often operate in numerous other tissues at the level of the overall body pattern, at
the organ level, for body rotation where it is not symmetrical, and at the cellular and

subcellular levels.

In considering the impacts of cannabinoids on the forming embryo it is of interest to consider
the effects cannabinoids might have on one of the main morphogen systems in the body
which is sonic hedgehog. A brief consideration of their impacts on other fundamental

morphogen systems follows.

Sonic Hedgehog

Sonic Hedgehog (shh) is one of the most important of all the body morphogens. Indeed one

contemporary textbook includes 174 references to this key morphogen [109].

Shh has been shown to be critically involved in the development of the following structures
[109]:

Gastrula / Early Embryo
e Primitive node of the late gastrula
e Notochord
e shh gradient along ventral surface of embryo
e Gradient antagonizes its opposing morphogens, particularly FGFs, from posterior

embryo

Brain
e Early Forebrain specifier and organizer
e Controls ventral midbrain formation including the ventral tegmental area and Nucleus

Accumbens
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Cerebellum organizer — The large Purkinje cell secrete shh which stimulates granule
cell proliferation [109]

Induces motor neuron development in the ventral neural tube [109]

Face organizer [109]

Shh is critical for the outgrowth of the Palatal shelves
Ectodermal tips of the facial processes

Controls midline tongue fusion

Controls development of the filiform papillae on the tongue
Controls tooth development

Controls taste bud development

Apical ectoderm of second pharyngeal pouch [109]

Splits the single eye field into two halves, right and left [109]

Induces the outgrowth of the optic cup from the forebrain which becomes the optic
nerve and then the optic vesicle and later neural retina

The bulging frontal lobe of the forebrain secretes shh to induce an ectodermal
organizing centre in the overlying skin called the frontonasal ectodermal zone which
controls the development of the cheeks and nose again by the secretion of shh
Induction of the ventral and nasal retinae of the eye

Acts as a repulsive signal guiding axonal growth of retinal ganglion cells

Retinal patterning [109]

Ear specification — shh specifies ventrality in the developing otocyst [109]

Controls mouth formation and size of mouth [109]

Breaks down the oropharyngeal membrane

Respiratory
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Tips of outgrowing lung buds [109]

Gastrointestinal Tract

Upper and lower Intestinal portals [109]

Controls specification of the foregut

Shh secreted from the esophageal mucosa control radial specification of the
esophagus and inhibits muscle development in the submucosa,

Shh signalling from the gastric mucosa controls smooth muscle development
Gastric development and enlargement [109]

Shh secreted from the intestinal mucosa control radial specification of the intestinal
and inhibits muscle development in the submucosa,

The muscularis mucosae of the small intestine develops much later in foetogenesis
when the shh gradients have declined

Intestinal elongation

Controls the activity of the gut stem cells deep in the intestinal crypts

Rostral and caudal intestinal portals

Controls the development of the anal opening

Controls pancreas development [109]

Cardiac

Maintains cardiogenic proliferation in the secondary heart field [110]

The shh-dependent secondary heart field contributes to the conoventricular outflow
tract [111]

Shh controls elongation of the conoventricular outflow tract via shh-dependent
progenitors [111]

Shh is essential for aortic arch development [112]

Shh control outflow tract development [113, 114]

Shh is critical in cardiovascular development [115]

Shh plays a critical role in neural crest cell specification some of which contribute to
cardiac cells [116]

Vascular

Induces formation of the dorsal aortae [117]
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e Controls formation and remodelling of branchial arch blood vessels [118]

e Together with BMP and notch signalling shh is critically involved with induction of
the first dedicated haemopoietic cells which arise in the fusing dorsal aortae

e Arterial differentiation is induced in a molecular cascade which commences with shh
signaling to VEGFA and notch from a general endothelial background of angioblasts
[109, 119, 120]

Genitourinary
e Contributes to bladder growth and sufficiency [109]
e Contributes as a trophic factor to development and outgrowth of the genital tubercle

under the influence of shh derived from the urethral endoderm [109]

Limbs
e Zone of polarizing activity in limb formation [109]
e Key organizer of the patterning of the digits [109]

e Hair buds development

Therefore the recent demonstration therefore that cannabidiol and THC inhibit shh signalling
necessarily carries major implications for cannabinoid-related teratogenesis [42]. These
cannabinoids were noted to both depress shh and Glil mRNA and induce the formation of a
CB1R-smoothened (“smoothened” is the effector molecule of the shh “patched” receptor)
heteromer which reverses the polarity of downstream signalling of smoothened. These
authors noted that the critical period for foetal development in this regard is the third to fourth
week of gestation in the embryonal period of development when many women are unaware

that they are pregnant.

Interference with shh-dependent processes at key stages of development will likely result in
the following anomalies which have been described in various studies as being cannabis-
related:

e Exencephaly [11, 121]

e Encephalocele [13, 17]

o Deficiencies in spinal column formation — myelocele and meningomyelocele [13],
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Mental deficiencies such as ADHD and autism spectrum from deficient forebrain
differentiation [10, 66, 105, 122]

Lowered tone and motor control as has been described in children experiencing
prenatal cannabinoid exposure [10, 123-126]

Impaired visuomotor and executive processing seen in PCE children [127-129]
Cleft lip and palate (USA- present study)

Holoprosencephaly [42] including cyclopia (single eye) (USA- present study)
Respiratory [18, 20]

Limb defects [11-13, 18, 20, 121, 130] (USA- present study)

Vascular catastrophes — in limbs [13] (USA- present study), body wall closure [7, 13,

131-136]

Epispadias, hypospadias [20] (USA- present study)
Obstructive Genitourinary defect (USA- present study)
Gastrointestinal stenoses and atresias (USA- present study)

Anorectal agenesis

It has been reported by many investigators that cannabinoids reduce cell growth and reduce

synthesis of the macromolecules of life such as DNA, RNA and proteins including histones
[12, 23, 24, 26-32, 137-140].

The inhibition of cell growth and division would explain many features of cannabis

teratogenesis including:

i)

i)

ii)

Failure of the anterior and posterior neuropores to close, resulting in
encephalocele, exencephaly and spina bifida respectively;

Cleft lip and palate due to failure of the facial and palatal processes to properly
fuse

Several cardiovascular defects including:

a. Atrial septal defect secundum, where the atrial septal folds fail to grow across

the defect
b. Ventricular septal defects where the various components of the ventricular

wall fail to join across the defect
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c. Stenoses and atresias of the heart valves

d. Defective development of the great vessels, which have a very complex
developmental course

Body wall defects

Limb defects, where failure or interruption of cell division at key period of limb

bud outgrowth interrupts the normal sequence of events required for normal limb

development affecting:

a. The whole limb

b. The upper or lower segments of the limb

c. Digital development of fingers and toes

Gastrointestinal stenoses and atresias including:

a. Esophageal atresia [7] (USA- present study)

b. Small intestinal stenosis and atresia (USA- present study)

c. Large intestinal stenosis and atresia (USA- present study)

d. Biliary stenosis and atresia (USA- present study)

e. Anorectal stenosis and atresias (USA- present study)

Acrterial vascular catastrophes

a. Limb development

b. Body wall — omphalocele, gastroschisis, diaphragmatic hernia

As shown above shh is known to be a key morphogen directing the differentiation of the

arterial tree and its inhibition can be expected to disrupt normal vasculogenic and arterial

supply of key tissues. Cannabinoids are also vasoactive [141]. Both type 1 and 2

cannabinoid receptors (CB1Rs and CB2Rs) along with other receptor subtypes have been

described on the vasculature [141]. Cannabinoids acting at CB1Rs are often

proinflammatory and vasoconstrictive [141-145]. Such vascular defects could be involved

with the genesis of various congenital anomalies including:

i)

Body wall defects (gastroschisis and omphalocele) — cocaine and various
vasoconstrictive antihistaminic drugs are known to be associated with
gastroschisis [146-151] and cannabinoids may act similarly at least in the foetal
period of development

Gastrointestinal stenoses and atresias
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iii) Limb development as the developing limb anlage is highly vascular dependent

any interruption of its blood supply will necessarily truncate development.

Hence it could be said that the full spectrum of cannabinoid-induced embryopathy follows to
a close approximation a picture of shh mutation or deficit. The point has previously been
made that embryonic shh deficiency causes a wide variety of congenital defects including
effects on vertebra, anal atresia, cardiovascular anomalies, tracheoesophageal fistula, renal
defects and limb defects (VACTERL syndrome) [152]. These defects also have similarities
both to fetal alcohol syndrome [42] and Di George / Velocardiofacial (palatocardiofacial)

syndrome which may also include kidney and intellectual problems [153].

Other Genotoxic Mechanisms

In addition to direct and indirect interactions with specific morphogen pathways cannabinoids
have also been shown to interact deleteriously with chromosomes, DNA, the epigenome and
mitochondrial-metabolic-epigenomic pathways. These are reviewed in a companion
manuscript and have been considered elsewhere [24, 28, 31, 38, 41, 154-166].

SPECIFIC ORGAN SYSTEMS

Heart

In Hawaii five cardiovascular defects were related to elevated cannabis use, atrial and
ventricular septal defects, pulmonary valve atresia and stenosis, tetralogy of Fallot and
hypoplastic left heart syndrome [13]. In Colorado four cardiovascular defects rose across
time with increasing community cannabinoid penetration, namely atrial septal defect,
ventricular septal defect, patent ductus arteriosus and anomalies of the pulmonary artery [20].

In Canada total cardiovascular defects were related to increased cannabis use [18]. In
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Australia total cardiovascular defects, atrial and ventricular septal defects, transposition of the
great arteries, tetralogy of Fallot and patent ductus arteriosus occurred with higher incidence
in high cannabis using areas [19]. They also featured prominently in the present US

overview.

It is important to appreciate that heart development occurs by including cells from many loci
in the embryo including the primary and secondary heart fields, proepicardium, Juxtacardiac
field [167], cardiac neural crest and neural crest [109].

Major morphogens acting are retinoic acid, FGFs and shh. Neuregulin is involved in the
induction of both the heart valves and also the subendocardial electrical conducting system of
the heart [109].

It therefore follows that heart and great vessels form as a result of a carefully orchestrated
sequential complementation of progenitor cells from many areas, some quit remote from the
cardiogenic field itself [109]. It is also apparent that numerous genes and transcription

factors are involved in this process [109].

Given the wide diversity of cannabinoid actions in a wide variety of cell types it seems
particularly unlikely that cannabinoids would not impact this delicate and intricate process at
many points.

The numerous interactions of shh with both heart and great vessel formation were
enumerated above.

Respiratory Defects

Respiratory defects were noted to be elevated in the high cannabis using areas of Colorado

and Canada [18, 20]. Shh is noted to be centrally involved in the budding and development of
the respiratory tree [109].

Face
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In the Hawaiian series incidence rates of cleft lip and palate together with anotia / microtia
were elevated by prenatal cannabis exposure [13]. Microphthalmia was non-significantly
elevated. In Canada facial clefts were non-significantly elevated [18]. In Australia facial and

ear anomalies were non-significantly elevated [19].

As was noted above shh plays a large role in face development through the frontal facial
organizer, at the tip of the frontonasal processes which form the sides of the cleft lip, at the

tips of the palatal shelves, in the tongue, teeth, taste buds and filiform papillae [109].

Alcohol and steroidal alkaloids are known to disrupt shh signalling in the face [168].

Gastrointestinal Tract

The Hawaiian series noted that several gastrointestinal anomalies were elevated following
prenatal cannabis exposure including esophageal atresia, pyloric stenosis, and large bowel
stenoses and atresias including anorectal atresia [13]. In Australia small intestinal stenosis
was identified positively [19]. Gastrointestinal anomalies featured prominently in the present
analysis including particularly small intestinal stenosis and atresia which was linked with

cannabidiol use both causally and in a space-time context.

The prominent involvement of shh and major morphogens in the growth and development of
all parts of the gastrointestinal tract was described above [109].

Urinary tract

Given the above notes on the location of shh in the genitourinary system it is of interest that
obstructive genitourinary defects were identified both in Hawaii and in the present US survey
series [13]. Hypospadias was identified positively in Australia [19].
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Body wall anomalies

Gastroschisis and diaphragmatic hernia have previously been noted to be linked with prenatal
cannabis exposure by CDC and NBDPN researchers [7] although gastroschisis was not
positively identified in the present investigation [7]. In Colorado gastroschisis and

diaphragmatic hernia were positively identified [20].

Limbs

Limb reductions were noted as significant correlates in the continuous bivariate analysis of
THC and cannabis with minimal E-Values of 1.89 and 9.53. Leg reductions were noted as
significant correlates of cannabidiol, THC and cannabis with minimal E-Values of 2.38, 1.32,
and 2.57 (Tables 6-8). They were not seen in association with tobacco, alcohol or cocaine
exposure. This finding is consistent with the arm reduction anomalies reported from Hawaii
following prenatal cannabis exposure [13], the elevation of total congenital anomalies seen in
Canada which also may have included limb reductions [18] and preclinical studies [11, 12,
121]. Cannabis of course is well known to interfere with both cellular division including
macromolecular synthesis and blood vessel sprouting. Blood vessels are known to have high
density cannabinoid receptors which are known to be frequently pro-inflammatory and
vasoactive [141-145]. Moreover limb outgrowth occurs in a tight time window during
embryogenesis [169]. It is therefore possible that cannabinoid exposure during this critical
window of development interferes with cellar division in the limb bud and vascular budding

and outgrowth thereby compromising limb development.

It is of interest that arm reduction anomalies along with polydactyly and syndactyly were
noted to have occurred with increased incidence rates following prenatal cannabis exposure
in the Hawaiian series, and leg anomalies rates rose in the present US series [13].
Polydactyly and syndactyly and total musculoskeletal anomalies rose in Colorado with
cannabis legalization [20]. It is difficult to comment on the major limb anomalies as it is a
congenital anomaly for which ETOPFA may be practised at high rates. In the Australian
series there was a non-significant trend to higher rates of major arm and leg anomalies in the

high cannabis using areas [19]. Similarly outbreaks of major limb anomalies were noted in
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both France and Germany [45, 47, 48, 50] in recent years where cannabinoids have been

allowed to enter the food chain, but not in nearby Switzerland where this is not permitted.

Major morphogens involved in early limb development are opposing gradients of the
Fibroblast Growth Factors (FGF) and Wnt on the one hand and retinoic acid on the other.
Limb length is controlled by Hox genes D-9 to D-13. Specification and formation of the
fingers and toes is controlled by alternating interactions and gradients between sonic
hedgehog, gremlin and FGF4 and by manipulating these gradients and gene dosages

experimentally one is able to control various malformations in a predictable manner [169].

It is of interest therefore that there are at least three major pathways by which cannabinoids
can interfere with limb bud development and outgrowth:
)} Direct inhibition of cell division and cell growth
i) Direct and indirect blockades of shh gradients from the zone of polarizing activity
in the inferior axillary region and along the posterior edge of the limb and in the
digital rays
iii) Vasculopathic mechanisms whereby interference with the ingrowing blood supply

compromises limb development.

It is important to note that limb development is strictly sequential so that a block at critical
developmental time periods will inevitably block subsequent steps. It is easy to appreciate in
such a paradigm that significant cannabinoid intake in such critical windows of gestation may

have potentially catastrophic implications for limb growth and development.
It is also noteworthy that cannabis shares many of the mechanisms of action of thalidomide

[170-176] an agent which is notorious for interfering with limb outgrowth and bony skeletal
development, albeit at higher potency [53, 170, 175, 177-180].

Chromosomal defects

Downs syndrome was identified positively in Hawaii, Colorado, Australia and Canada as

well as in the present analysis of both categorical and continuous ETOPFA-corrected data
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[13, 18-20]. Chromosomal defects were found to be elevated in Canada and Australia [18,

19] as well as in the present US survey.

Several mechanisms of indirect chromosomal clastogenicity and DNA breakage have been
described [24, 26, 28, 33, 159].

Interactions of Cannabinoids with Other Major Morphogen Systems

Interaction between FGF (Fibroblast Growth Factor) and endocannabinoid systems have also

been described [181, 182] including transactivation of the FGF1R by CB1R [183].

Interactions between cannabinoids and bone morphogenetic proteins have also been
described [184-186].

Interactions between cannabinoids and retinoic acid signalling have been described [187-
189].

Interactions between cannabinoids and notch signalling have also been reported [190-196].

Interactions between cannabinoids and Whnt signalling have also been reported [197-203].

Interactions between cannabinoids and hippo have been reported [163].

Cannabinoids also interact with the neurexin-neuroligin system [204-206] which is key to the

architecture and development of neural synapses.

Cannabinoids also interact with the slit-robo system [192, 193, 207] which control arterial
pathfinding and also axonal growth cone steering mechanisms [109, 195, 208, 209]. Slit-
robo signalling is also one of the major morphogens directing and controlling the exuberant

outgrowth of the massive human neocortex [207, 210].
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Commonality

Given this plethora of actions of actions between cannabinoids and the major morphogens of
human and mammalian development one might well wonder why such anomalies are not
becoming much more common. There are several parts to this answer. One factor is that the
birth defect data from states where cannabis is legal such as Washington state and Oregon are
almost non-existent. Data from Colorado shows a dramatic rise in congenital anomalies
across the period of legalization as has been mentioned elsewhere [20]. Also since
cannabinoids are involved in virtually every aspect of reproduction including gamete
formation and meiotic divisions, the function of supporting granulosa and Sertoli cells in
ovary and testis, cells placentation, implantation, sperm fertility and hyperactivation, ovarian
signals to the sperm and cell division at the early zygote, morula and embryonic stages a high
rate of foetal loss is expected from severe anomalies which does not necessarily appear on
lists of birth defects, but is chronicled in case series such as that described above from
Washington D.C [14, 15]. Moreover the actual state level ETOPFA rate likely varies from
place to place and this is a major determinant of the rates of many serious CAs.

Causal Assignment

Two of the commonest criticisms made of observational studies are that the exposure of
interest is not distributed randomly across all experimental subjects, and that there may be
some uncontrolled confounding operating from some unmeasured variables which account
for the observed effect and for which the observed variables are acting merely as surrogates

or substitute markers.

The first criticism is answered in the present study by the use of inverse probability weighting

of the exposed groups. It is well established that the use of this procedure across
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observations transforms a merely observational dataset into a pseudo-randomized one from
which causal conclusions can properly be drawn by comparing exposure groups. This
technique is particularly suitable for those comparisons which would not generally be ethical
to apply in randomized controlled studies, such as antenatal exposures.

The second criticism is addressed herein by the use of E-Values. E-Values, or expected
values, calculate the degree of correlation required of some unknown confounding variable
with both the exposure and the outcome to explain away the observed effect. The literature
mentions that values above 1.25 are generally considered to indicate causal effects [67]. The
E-value for the lung cancer — tobacco relationship is 9 which is considered high [67, 68, 103].
It is clear from the present study that many of the E-Values quoted are much higher than this
gold standard metric.

Moreover it is entirely proper to use E-Values freely in relation both to specific models
(which have model standard deviations) and to final predictive models as has been done in
the present report [69].

One also notes that for two congenital anomalies we have conducted multiple regression by
several techniques which have very similar conclusions. Moreover for these defects we have
shown in their intrinsic natural space-time context that these relationships are conserved and

indeed amplified.

Furthermore our results are also consistent with a long, robust and highly consistent tradition
of laboratory and preclinical evidence as noted above.

As judged by the criteria of causation proposed by Hill [211] the present results fulfil the
criteria of strength of association, consistency across studies in the manner described,
specificity amongst substance exposures, temporality of sequence, coherence with known
data, biological plausibility as described in the above mechanistic discussion, biological dose-
response curve, analogy with similar situations in other places and experimental

confirmation.
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Generalizability

The present study has several advantages. Its study subject is a sizeable base population
comprising a national census birth population in excess of 18 million births, from a notional
year-on-year aggregated annualized total population of over 2 billion persons. Drug use data
is taken from a well verified nationally representative survey which has been faithfully
repeated annually for several decades now with very little important change which greatly
facilitates comparison between periods. Advanced statistical methods are employed on both
the aggregate dataset of all defects and two congenital anomalies in particular. The
techniques both of formal space-time analysis and of causal inference have been utilized. For
these reasons internal to the study we are confident that the present work is widely applicable
across the globe. Results reported herein strongly indicate that in those third world nations
where cannabis is known to be much more widely used the results are expected to be much
more severe than those reported for this nation where historically cannabis use was relatively

restricted until recent years.

The demonstration that many of these effects give the appearance on bivariate analysis of
being truly causal also necessarily implies that the results are truly biological and widely

generalizable.

The present work is also entirely consistent with a large and growing external body of
evidence from particular states within USA, namely Colorado and Hawaii [13, 20] and also
from Australia and Canada which attest to the concordance with the findings reported herein
[17-19].

Another important body of work which supports the present results is the preclinical literature
which the present results closely replicate. As was noted above in fact virtually all of the
mentioned congenital anomalies have been positively identified in the present study.

Hence for this variety of both internal and external reasons we feel that the findings in the
present study are widely generalizable with the primary caveat that in nations where cannabis
is more widely available we believe that the findings would be of even greater concern in

those cases where reliable datasets exist for its accurate assessment.
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Strengths and Limitations

In considering the strengths and limitations of the present study it is important to clarify
exactly what this study is and what it is not. The present study sets out to present a broad
overview of the apparent relationship of the US teratological experience to substance
exposure in the population during the notional period 2005-2013 when both major datasets
are available. It goes on to explore two particular anomalies in detail from both a causal
inference and geotemporospatial perspective as examples of the manner in which such
analyses can be carried forward using more versatile analytical techniques on extent data
series. For these reasons we feel it is premature to propose a list of cannabinoid related
congenital anomalies and limit ourselves merely to noting that the issue is of considerable
concern and well warrants further advanced statistical, epidemiological and basic science
investigation. Thus our study is not the last word on US substance-related teratology, but in
that it applies a series of advanced sequential linear and predictive modelling and
sophisticated analytical space-time and causal inferential techniques our study is more like
the first word opening an important discussion which has not been well addressed in recent

years.

This study has several strengths including using a nationwide census database for congenital
anomalies, using a large well validated nationally representative sample of the non-
institutionalized US population, using the major techniques of quantitative causal inference
namely inverse probability weighting and E-values, and geospatial regression across space
and time simultaneously to assess these roles, and continues by studying the predicted values
from space-time models to examine the way in which increasing cannabidiol exposure can be
related spatiotemporally to increasing dose-effect relationships. The analytical techniques
featuring linear models in tidy format conducted serially on 62 congenital anomalies in purrr
allow direct comparison of models within the same statistical run. The use of multi-facetted
plots allow the direct visual comparison of the effect on multiple congenital anomalies to be
visually inspected at a glance, and similarly between plot comparisons allows the effects of
various environmental teratogens to be directly compared. Graphical presentations of E-
Values also allow the quantitative and causal significance of findings between substances to

be directly compared.
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The limitations of this study relate to the limitations of its design. In common with most
epidemiological studies individual patient level exposure data was not available to it.
Obvious ways in which the present work might be extended such as by increasing the
geospatial resolution of the work and by increasing the numbers of congenital anomalies for
which detailed regression results are presented are outside the ambit of the present study, and
represent a fertile area for future workers. NBDPN may be able to further extend the dataset
by completing missing data fields. Moreover perhaps the most definitive technique by which
to study these data would include the use of inverse probability weighting in spatiotemporal
models. It may become possible with time to employ a weighting term which is actually a
product of two lists of weights, one being a sparse geospatial matrix and one being IPW,
similar to a current implementation in the R “survey” package. Since such techniques have
not been developed at the time of writing it has not been possible to deploy them on these
topics. In their stead multiple IPW causal models have been used to address pseudo-
randomization and complete these gaps. This also represents an important area for future
statistical methodological development. As the USA moves increasingly towards population
wide exposure to cannabinoids the importance of quantifiable continuous measures of
exposure to various cannabinoids, for example by epigenomic and or glycomic criteria
proportionately increases as has previously been noted [108]. State level anomaly-specific
ETOPFA rates were not available to this work and ETOPFA rates had to be estimated from
the published literature. Their addition to the present dataset would improve the quality and

accuracy of the various estimates used.

Conclusion

In summary we note that bivariate analysis of ETOPFA-corrected CA incidence against state-
based substance exposure rates indicates that cannabis and estimated THC are more
important environmental teratogens than tobacco, and cannabidiol is likely more important in
these metrics than either binge or regularly consumed alcohol. Elevated E-values for many
defects indicates that a causal relationship is likely. Small intestinal stenosis and atresia and

obstructive genitourinary defects were studied in detail by inverse probability weighted



1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

1585
1586

Page |50

mixed effects, robust and panel regression and by space-time regression and by predictive
modelling in spatiotemporal models where these findings were all strongly confirmed and
again were shown to be epidemiologically causal in nature. Results are consistent and
concordant with several decades of preclinical and laboratory work implicating cellular
pathways at chromosomal, genomic, epigenomic and mitochondriopathic levels and with
interruption of major embryonal-foetal morphogen gradients particularly sonic hedgehog and
with patterns of fetotoxicity and embryotoxicity observed in preclinical models and fulfil the
Hill criteria of causality. The present work is part of an on-going project to further
investigate these themes in greater depth and finer detail. Further work by interested groups

in related areas is strongly indicated.

The present situation where cannabidiol is widely available across USA and popularly
perceived as harmless is unusually uninformed and particularly ill-advised. Our analyses
implicate THC, cannabigerol and cannabidiol, and analyses could be presented similarly
implicating also cannabinol and cannabichromene. From a public health point of view the
present de facto policy of official negligence is at once unjustified and unjustifiable.

Data indicate that cannabinoid teratogenicity including cannabidiol teratogenicity and
presumptive genotoxicity are clinically significant and carry far-reaching and multi-
generational public health impacts in foetal-maternal and reproductive medicine. We feel
that it is important that the transgenerational impacts of general register-wide overviews and
surveys such as this be given wide canvas and discussion in the community and assume
substantial prominence in the public debate on the proper and proven role of cannabinoids in
the global community. Moreover the assignment of proper weight to inheritable
considerations is essential to optimally formulate policy which balances the risk-benefit
equation relating to the general widespread distribution of known genotoxins such as
numerous cannabinoids — including cannabidiol - as indeed genotoxicity and fetotoxicity has
always been a foundational cornerstone and was always the conceptual origin of modern drug

regulation by national Government agencies.
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Acronym Meaning
AFE Attributable Fraction in the Exposed
BMP Bone Morphogenetic Proteins
CA Congenital Anomaly
CBC Cannabichromene
CBD Cannabidiol
CBG Cannabigerol
CBN Cannabinol
CDC Centers for Disease Control, Atlanta, Georgia
CcGAS Cyclic GMP-AMP Synthase
Dbx Double homeobox
DEA Drug Enforcement agency
ETOPFA Early Termination of Pregnancy for Anomaly
ETOPFACAR | Early Termination of Pregnancy for Anomaly -Adjusted Congenital Anomaly Rate
E-Value Expected Value
FVV Fitted Values
FGF Fibroblast Growth Factor
Fox Forkhead box
GAM Generalized Additive Model
Glil Glioma-associated protein 1
IPW Inverse Probability Weighting
NBDPN National Birth Defects Prevention Network
Nkx Homeobox protein Nkx
NSDUH National Survey of Drug Use and Health
OGUD Obstructive Genitourinary Defect
OLS Ordinary Least Squares
PAR Population Attributable Risk
Pax Paired box
plm Panel Linear Model
PR Prevalence Ratio
RDAS Restricted-Use Data Analysis System
re Random Effects
SAMHDA Substance Use and Mental Health Data Archive
SAMHSA Substance Abuse and Mental Health Services Administration
sem Spatial Error Method
semsrre Spatial Error Method, serial autocorrelation and random effects
sf Simple Features (Package in R)
SISA Small Intestinal Stenosis and Atresia
Shh Sonic hedgehog

splm

Spatial Panel Linear Model
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spreml Spatial Panel Random Effects Maximum Likelihood
SPDSST Spatial Panel Dataset in Space-Time

sr Serial Correlation

STING Stimulator of Interferon Genes

THC A9-Tetrahydrocannabinol

VEGFA Vascular Endothelial Growth Factor A
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Table 1.: Regression Slopes for ETOPFA-Corrected Congenital Anomaly Rates by Cigarette Exposure
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Parameter
S Model E-Values

Congenital Anomaly Term Estimate Std.Erro t-Value | P_Value Adj.R.Square S.D. t-Statistic P- E-Value- | E-Value

r d Value Point - Lower
Cigarette 2.98E- 2.98E-

Atrial septal defect s 461.4473 80.9277 5.7020 08 0.0999 49.0262 32.5125 08 | 10490.78 555.10
Cigarette 6.33E- 6.33E-

Common truncus (truncus arteriosus) S 10.0328 1.8075 5.5506 08 0.0912 1.0985 30.8095 08 8137.59 434.55
Cigarette 0.000

Pyloric stenosis s 108.3707 29.4229 3.6832 0.0004 0.1025 9.7747 13.5660 4 | 48155.03 226.33
Cigarette 0.000

Tetralogy of Fallot s 8.6017 2.5730 3.3431 0.0009 0.0319 1.5895 11.1763 9 274.78 14.91
Cigarette 0.001

Diaphragmatic hernia S 6.1187 1.9038 3.2139 0.0015 0.0306 1.1633 10.3291 5 239.26 12.50
Cigarette 0.008

Double outlet right ventricle S 5.8943 2.1948 2.6856 0.0080 0.0369 1.0114 7.2122 0 401.58 7.91
Cigarette 0.009

Rectal and large intestinal atresia/stenosis S 5.9460 2.2635 2.6269 0.0091 0.0198 1.3888 6.9008 1 97.91 4.85
Dextro-transposition of great arteries (d- Cigarette 0.018

TGA) S 5.1147 2.1421 2.3877 0.0180 0.0260 1.0324 5.7011 0 181.05 3.95
Cigarette 0.023

Transposition of great arteries S 5.8459 2.5671 2.2773 0.0235 0.0138 1.5155 5.1859 5 66.41 2.67
Cigarette 0.047

Hypoplastic left heart syndrome S 4.7634 2.3941 1.9897 0.0475 0.0095 1.4718 3.9588 5 37.52 1.28
Cigarette 0.050

Holoprosencephaly S 44.6731 22.6580 1.9716 0.0506 0.0195 10.1998 3.8873 6 107.14 1.21
Cigarette 0.060

Cloacal exstrophy S 13.4134 7.0820 1.8940 0.0608 0.0220 2.7748 3.5873 8 162.22 1.00
Cigarette 0.061

Ventricular septal defect S 64.3023 34.2374 1.8781 0.0614 0.0088 20.1650 3.5274 4 35.91 1.00
Cigarette 0.092

Hydrocephalus without spina bifida s 21.5055 12.6853 1.6953 0.0926 0.0153 4.5872 2.8741 6 142.01 1.00
Cigarette 0.153

Hypospadias s 58.5925 40.8897 1.4329 0.1530 0.0038 24.2028 2.0533 0 17.59 1.00
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Cigarette 0.174

Bladder exstrophy s 0.3683 0.2706 1.3607 0.1747 0.0031 0.1604 1.8515 7 15.63 1.00
Cigarette 0.240

Biliary atresia S 0.8244 0.7004 1.1770 0.2402 0.0014 0.4223 1.3853 2 11.30 1.00

Hirschsprung disease (congenital Cigarette 0.244

megacolon) s 5.2534 4.4871 1.1708 0.2441 0.0032 1.5328 1.3708 1 44.74 1.00
Cigarette 0.246

Craniosynostosis s 13.2676 11.3680 1.1671 0.2462 0.0039 3.8587 1.3621 2 45.19 1.00
Cigarette 0.268

Choanal atresia S 1.3216 1.1914 1.1093 0.2682 0.0008 0.7233 1.2307 2 10.02 1.00
Cigarette 0.284

Amniotic Bands s 1.9776 1.8318 1.0796 0.2840 0.0023 0.5285 1.1656 0 59.76 1.00
Cigarette 0.281

Cleft palate alone s 5.3064 4.9157 1.0795 0.2814 0.0007 27774 1.1653 4 10.85 1.00
Cigarette 0.329

Ebstein anomaly S 0.7405 0.7584 0.9763 0.3297 -0.0002 0.4646 0.9532 7 8.00 1.00
Cigarette 0.344

Reduction deformity, Lower limbs S 8.6524 9.1172 0.9490 0.3445 -0.0008 3.2313 0.9006 5 22.36 1.00
Cigarette 0.386

Pulmonary valve atresia s 3.3612 3.8692 0.8687 0.3861 -0.0013 1.9006 0.7546 1 9.47 1.00
Cigarette 0.427

Cleft lip with cleft palate S 3.2169 4.0414 0.7960 0.4271 -0.0020 1.8393 0.6336 1 9.29 1.00
Cigarette 0.518

Gastroschisis S 2.1392 3.3067 0.6469 0.5182 -0.0021 1.9126 0.4185 2 4.98 1.00
Cigarette 0.604

Clubfoot s 7.7021 14.8418 0.5189 0.6047 -0.0057 5.8097 0.2693 7 6.14 1.00
Cigarette 0.614

Obstructive genitourinary defect S 19.2026 38.0533 0.5046 0.6148 -0.0066 12.9550 0.2546 8 7.17 1.00
Cigarette 0.628

Coarctation of the aorta S 3.2398 6.6943 0.4840 0.6288 -0.0025 4.1228 0.2342 8 3.51 1.00
Cigarette 0.706

Aniridia s 0.5344 1.4146 0.3778 0.7063 -0.0082 0.4681 0.1427 3 5.10 1.00
Cigarette 0.808

Anophthalmia/microphthalmia S 1.5564 6.3984 0.2432 0.8080 -0.0034 3.8287 0.0592 0 2.25 1.00
Cigarette 0.918

Epispadias s 0.2592 2.5368 0.1022 0.9189 -0.0121 0.7690 0.0104 9 2.06 1.00
Cigarette 0.940

Interrupted aortic arch S 0.1509 2.0077 0.0751 0.9402 -0.0072 0.8982 0.0056 2 1.60 1.00
Cigarette 0.978

Microcephalus s 0.3421 12.8915 0.0265 0.9789 -0.0084 4.5413 0.0007 9 1.35 1.00
Cigarette 0.999

Encephalocele s -0.0017 2.1734 -0.0008 0.9994 -0.0034 1.3370 0.0000 4 1.04 NA
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Cigarette 0.930

Congenital posterior urethral valves S -0.5966 6.8233 -0.0874 0.9305 -0.0069 2.9831 0.0076 5 1.69 NA
Cigarette 0.876

Single ventricle S -0.3417 2.1972 -0.1555 0.8766 -0.0065 0.9898 0.0242 6 2.08 NA
Cigarette 0.740

Congenital hip dislocation s -6.9146 20.8003 -0.3324 0.7402 -0.0086 5.9638 0.1105 2 5.19 NA
Cigarette 0.650

Renal agenesis/hypoplasia S -2.2676 5.0062 -0.4530 0.6509 -0.0027 3.0895 0.2052 9 3.31 NA

Esophageal atresia/tracheoesophageal Cigarette 0.571

fistula S -0.6793 1.1994 -0.5664 0.5716 -0.0023 0.7428 0.3208 6 4.03 NA
Cigarette 0.525

Small intestinal atresia/stenosis s -1.8286 2.8694 -0.6373 0.5250 -0.0042 1.2732 0.4061 0 6.85 NA
Cigarette 0.510

Pulmonary valve atresia and stenosis S -42.7272 64.7992 -0.6594 0.5102 -0.0019 38.9612 0.4348 2 4.87 NA
Cigarette 0.459

Spina bifida without anencephalus S -4.8101 6.5013 -0.7399 0.4599 -0.0014 4.0680 0.5474 9 5.31 NA
Cigarette 0.442

Atrioventricular septal defect S -3.1546 4.0985 -0.7697 0.4422 -0.0015 2.4370 0.5924 2 5.95 NA
Cigarette 0.412

Anencephalus s -9.9229 12.0861 -0.8210 0.4123 -0.0010 7.5960 0.6741 3 6.02 NA
Cigarette 0.376

Cleft lip with and without cleft palate S -7.2523 8.1749 -0.8871 0.3767 -0.0016 3.0661 0.7870 7 16.70 NA
Cigarette 0.311

Omphalocele S -6.3434 6.2594 -1.0134 0.3118 0.0001 3.5702 1.0270 8 9.55 NA
Cigarette 0.152

Patent ductus arteriosus s -134.9204 93.6508 -1.4407 0.1527 0.0103 26.7177 2.0755 7 197.55 NA
Cigarette 0.130

Cleft lip alone S -7.6263 5.0141 -1.5210 0.1300 0.0072 2.3847 2.3134 0 36.22 NA
Cigarette 0.114

Aortic valve stenosis S -5.5657 3.5177 -1.5822 0.1147 0.0052 2.1283 2.5034 7 21.09 NA
Cigarette 0.104

Limb deficiencies (reduction defects) s -9.2468 5.6656 -1.6321 0.1044 0.0093 2.6416 2.6637 4 47.85 NA
Cigarette 0.073

Congenital cataract S -3.1133 1.7342 -1.7952 0.0737 0.0077 1.0449 3.2228 7 29.59 NA
Cigarette 0.021

Reduction deformity, Upper limbs s -9.9676 4.2945 -2.3210 0.0219 0.0342 1.5208 5.3870 9 778.14 NA

Total anomalous pulmonary venous Cigarette 0.003

connection S -2.9518 0.9933 -2.9718 0.0034 0.0421 0.4914 8.8318 4 472.81 NA
Cigarette 0.002

Tricuspid valve atresia and stenosis S -13.5992 4.5124 -3.0137 0.0028 0.0268 2.7617 9.0825 8 176.14 NA
Cigarette 0.001

Deletion 22911.2 s -4.0755 1.2068 -3.3771 0.0010 0.0817 0.5118 11.4051 0 2803.97 NA
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Cigarette 0.000

Turner syndrome s -67.5119 15.2076 -4.4394 0.0000 0.1217 6.7057 19.7079 0 | 19050.01 NA
Cigarette 0.000

Trisomy 13 S -47.5542 8.4152 -5.6510 0.0000 0.0943 5.1389 31.9335 0 9081.76 NA
Cigarette 0.000

Trisomy 18 s -102.6539 15.9192 -6.4485 0.0000 0.1174 9.7711 41.5825 0| 28380.44 NA
Cigarette 0.000

Trisomy 21 (Down syndrome) s -145.2252 19.7758 -7.3436 0.0000 0.1423 12.4068 53.9284 0| 84541.57 NA
Cigarette 0.000 | 150869.5

Anotia/microtia S -47.4905 6.3089 -7.5275 0.0000 0.1587 3.8479 56.6635 0 8 NA




Table 2.: Reqression Slopes for ETOPFA-Corrected Congenital Anomaly Rates by Cannabis Exposure
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Parameters Model E-Values

. . . t- P- E-Value | E-Value

Congenital Anomaly Term Estimate Std.Error | t-Value | P_Value | Adj.R.Squared S.D. Statistic | Value - Point - Lower
7.66E- 7.66E-

Small intestinal atresia/stenosis Cannabis 26.5037 3.7660 7.0377 11 0.2534 | 1.0978 | 49.5291 11 | 6.95E+09 | 1.55E+07
2.03E- 2.03E-

Trisomy 21 (Down syndrome) Cannabis 221.1194 25.4625 8.6841 16 0.1891 | 10.2305 | 75.4141 16 | 6.97E+08 | 8.30E+06
3.40E- 3.40E-

Interrupted aortic arch Cannabis 15.4036 3.1814 4.8418 06 0.1390 | 0.8305 | 23.4430 06 | 4.28E+07 | 4.68E+04
3.16E- 3.16E-

Clubfoot Cannabis 94.0309 21.7820 4.3169 05 0.1211 | 54311 | 18.6357 05 | 1.39E+07 | 1.10E+04
6.07E- 6.07E-

Congenital hip dislocation Cannabis 115.8679 32.7515 3.5378 04 0.0997 | 5.6345 | 12.5159 04 | 2.68E+08 | 8.60E+03
2.08E- 2.08E-

Trisomy 13 Cannabis 75.1394 14.1320 5.3170 07 0.0841 | 5.1679 | 28.2701 07 | 1.11E+06 | 8.58E+03
4.49E- 4.49E-

Obstructive genitourinary defect Cannabis 241.0897 66.6741 3.6159 04 0.0958 | 12.2786 | 13.0750 04 | 1.15E+08 | 7.30E+03
1.18E- 1.18E-

Congenital posterior urethral valves Cannabis 23.9399 6.0470 3.9590 04 0.0925 | 1.6001 | 15.6734 04 | 1.64E+06 | 1.96E+03
2.34E- 2.34E-

Trisomy 18 Cannabis 126.9696 26.3799 4.8131 06 0.0678 | 10.0424 | 23.1662 06 | 1.99E+05 | 1.85E+03
Esophageal atresia/tracheoesophageal 4.83E- 4.83E-

fistula Cannabis 8.8449 1.8993 4.6570 06 0.0645 | 0.7176 | 21.6880 06 | 1.49E+05 | 1.34E+03
1.16E- 1.16E-

Hypospadias Cannabis 277.1790 62.0518 4.4669 05 0.0640 | 23.4595 | 19.9532 05 | 9.34E+04 842.36
3.48E-

Biliary atresia Cannabis 4.4970 1.2418 3.6215 0.0003 0.0418 | 0.4136 | 13.1152 04 | 3.96E+04 188.70

Deletion 22911.2 Cannabis 6.6430 2.1356 3.1106 0.0024 0.0690 | 0.5153 9.6756 0.0024 | 2.49E+05 155.04

Turner syndrome Cannabis 85.6995 27.3283 3.1359 0.0021 0.0614 | 6.9321 9.8340 0.0021 | 1.54E+05 137.32
3.62E-

Rectal and large intestinal atresia/stenosis | Cannabis 13.0849 3.6262 3.6085 0.0004 0.0395 | 1.3748 | 13.0210 04 | 1.16E+04 105.07

Epispadias Cannabis 12.5446 4.8274 2.5986 0.0111 0.0648 | 0.7392 6.7528 0.0111 | 1.02E+07 90.57

7.34E-
Renal agenesis/hypoplasia Cannabis 27.3954 8.0283 3.4124 04 0.0346 | 3.0315 | 11.6442 0.0007 | 7.45E+03 66.37
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Anotia/microtia Cannabis 37.2830 10.9541 3.4036 7.5754 0.0346 41220 | 11.5843 0.0008 | 7.51E+03 65.76
Diaphragmatic hernia Cannabis 10.2830 3.0660 3.3539 9.0154 0.0335 | 1.1615 | 11.2486 0.0009 | 6.31E+03 56.94
Cleft palate alone Cannabis 24.1946 7.4701 3.2389 0.0014 0.0366 2.7271 | 10.4902 0.0014 | 6.42E+03 48.45
Encephalocele Cannabis 11.3770 3.4999 3.2507 0.0013 0.0311 | 1.3138 | 10.5670 0.0013 | 5.29E+03 45.63
Aortic valve stenosis Cannabis 17.8815 5.6987 3.1378 0.0019 0.0296 2.1020 9.8461 0.0019 | 4.60E+03 36.41
Ventricular septal defect Cannabis 166.2143 53.4999 3.1068 0.0021 0.0296 | 19.9528 9.6523 0.0021 | 3.92E+03 32.64
Pulmonary valve atresia Cannabis 9.4232 3.2900 2.8642 0.0047 0.0369 | 1.0048 8.2037 0.0047 | 1.02E+04 29.43
Omphalocele Cannabis 28.8975 9.4470 3.0589 0.0025 0.0311 | 35144 9.3568 | 0.0025 | 3.55E+03 29.18
Hypoplastic left heart syndrome Cannabis 10.7890 3.7873 2.8487 0.0047 0.0224 | 1.4621 8.1152 0.0047 | 1.65E+03 15.88
Hirschsprung disease (congenital

megacolon) Cannabis 19.3922 8.4341 2.2993 0.0233 0.0356 | 1.5076 5.2866 | 0.0233 | 2.42E+05 10.95
Limb deficiencies (reduction defects) Cannabis 21.4215 8.5782 2.4972 0.0134 0.0287 | 2.6156 6.2360 0.0134 | 3.45E+03 9.53
Bladder exstrophy Cannabis 1.0618 0.4420 2.4021 0.0170 0.0173 | 0.1593 5.7701 | 0.0170 860.98 5.62
Tetralogy of Fallot Cannabis 9.9067 4.1188 2.4052 0.0168 0.0152 | 1.6031 5.7852 | 0.0168 553.33 5.16
Total anomalous pulmonary venous

connection Cannabis 3.9176 1.7901 2.1885 0.0299 0.0208 | 0.4968 4.7896 0.0299 | 2.61E+03 3.71
Reduction deformity, Lower limbs Cannabis 16.8233 8.1886 2.0545 0.0420 0.0251 1.5723 4.2209 0.0420 | 3.39E+04 2.57
Coarctation of the aorta Cannabis 22.5596 10.7794 2.0928 0.0372 0.0111 | 4.0947 4.3800 0.0372 300.37 2.12
Atrial septal defect Cannabis 285.3616 | 136.7781 2.0863 0.0378 0.0117 | 51.3723 4.3527 0.0378 313.06 2.08
Congenital cataract Cannabis 5.9492 2.9939 1.9871 0.0479 0.0102 1.0436 3.9486 0.0479 357.58 1.39
Spina bifida without anencephalus Cannabis 19.7183 10.1652 1.9398 0.0533 0.0086 | 4.0477 3.7628 0.0533 167.88 1.00
Cleft lip with cleft palate Cannabis 11.1868 5.7863 1.9333 0.0548 0.0149 1.8237 3.7377 0.0548 530.72 1.00
Choanal atresia Cannabis 3.9066 2.0476 1.9078 0.0574 0.0090 | 0.7204 3.6399 | 0.0574 277.66 1.00
Holoprosencephaly Cannabis 72.7261 39.0245 1.8636 0.0644 0.0168 | 10.2141 3.4730 0.0644 | 1.30E+03 1.00
Cloacal exstrophy Cannabis 20.4977 11.5158 1.7800 0.0777 0.0185 | 2.7798 3.1683 0.0777 | 1.64E+03 1.00
Anophthalmia/microphthalmia Cannabis 9.2992 5.2676 1.7654 0.0786 0.0075 | 1.7798 3.1165 0.0786 231.75 1.00
Single ventricle Cannabis 6.1305 3.7353 1.6412 0.1029 0.0112 0.9811 2.6936 0.1029 589.19 1.00
Pulmonary valve atresia and stenosis Cannabis 19.6240 13.4446 1.4596 0.1455 0.0038 | 5.0335 2.1305 0.1455 68.97 1.00
Gastroschisis Cannabis 5.8564 4.9756 1.1770 0.2402 0.0014 1.9092 1.3854 0.2402 32.10 1.00
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Atrioventricular septal defect Cannabis 6.8595 6.7893 1.0103 0.3132 7.69E-05 | 2.4351 1.0208 0.3132 25.45 1.00
Aniridia Cannabis 2.4802 3.2029 0.7744 0.4405 -0.0038 0.4671 0.5996 0.4405 250.47 1.00
Cleft lip alone Cannabis 5.3804 7.5548 0.7122 0.4773 -0.0027 | 2.3966 0.5072 | 0.4773 14.91 1.00
Microcephalus Cannabis 12.6431 24.1277 0.5240 0.6012 -0.0061 4.5361 0.2746 0.6012 24.76 1.00
Patent ductus arteriosus Cannabis 39.3210 | 155.2633 0.2533 0.8006 -0.0092 | 26.9797 0.0641 0.8006 7.00 1.00
Cleft lip with and without cleft palate Cannabis -0.2957 15.7796 | -0.0187 0.9851 -0.0077 | 3.0755 0.0004 0.9851 1.41 -
Double outlet right ventricle Cannabis -0.1429 3.4924 | -0.0409 0.9674 -0.0062 | 1.0338 0.0017 0.9674 1.52 -
Common truncus (truncus arteriosus) Cannabis -1.2255 3.0794 | -0.3980 0.6909 -0.0028 | 1.1539 0.1584 0.6909 4.70 -
Ebstein anomaly Cannabis -0.5654 1.2641 | -0.4473 0.6550 -0.0028 | 0.4652 0.2001 | 0.6550 5.49 -
Pyloric stenosis Cannabis -41.8439 60.3518 | -0.6933 0.4896 -0.0047 | 10.3424 0.4807 | 0.4896 78.93 -
Tricuspid valve atresia and stenosis Cannabis -5.6602 7.5460 | -0.7501 0.4538 -0.0015 | 2.8017 0.5626 0.4538 12.05 -
Amniotic Bands Cannabis -3.2223 4.0536 | -0.7949 0.4293 -0.0052 | 0.5304 0.6319 | 0.4293 502.82 -
Hydrocephalus without spina bifida Cannabis -20.4351 245694 | -0.8317 0.4072 -0.0026 | 4.6285 0.6918 0.4072 110.65 -
Dextro-transposition of great arteries (d-

TGA) Cannabis -3.1308 3.5121 | -0.8915 0.3739 -0.0012 | 1.0467 0.7947 | 0.3739 29.91 -
Anencephalus Cannabis -18.7394 19.5370 | -0.9592 0.3382 -0.0003 | 7.5930 0.9200 | 0.3382 18.38 -
Transposition of great arteries Cannabis -4.6234 3.9852 | -1.1601 0.2469 0.0012 | 1.5252 1.3459 0.2469 31.05 -
Craniosynostosis Cannabis -38.5041 18.9772 -2.0290 0.0454 0.0328 3.8024 4.1167 0.0454 | 2.01E+04 -
Reduction deformity, Upper limbs Cannabis -22.0440 7.9002 | -2.7903 0.0061 0.0519 | 1.5068 7.7858 0.0061 | 1.21E+06 -




Table 3.: Reqgression Slopes for ETOPFA-Corrected Congenital Anomaly Rates by Cannabidiol Exposure
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Parameters Model E-Values

Congenital Anomaly Term Estimat | Std.Erro t- P_Valu | Adj.R.Square | S.D. t- P- E-

e r Value e d Statisti | Value | Value - | Value -

c Point | Lower

Congenital hip dislocation Cannabidiol 298.2937 55.1100 5.4127 6.32E-07 0.2589 | 3.8459 29.2973 | 6.32E-07 | 9.00E+30 | 7.53E+19
Small intestinal Cannabidiol 61.6605 12.7480 4.8369 3.39E-06 0.1354 | 1.1814 23.3954 | 3.39E-06 | 8.48E+20 | 3.86E+12
atresia/stenosis
Biliary atresia Cannabidiol 10.9598 2.9445 3.7222 2.43E-04 0.0480 | 0.3922 13.8546 | 2.43E-04 | 2.22E+11 | 3.48E+05
Obstructive genitourinary Cannabidiol 486.0939 176.6878 2.7511 0.0072 0.0680 | 13.0815 7.5688 0.0072 | 9.69E+14 | 3.51E+04
defect
Hirschsprung disease Cannabidiol 38.1800 14.1676 2.6949 0.0084 0.0637 | 1.0029 7.2624 0.0084 | 2.22E+15 | 2.67E+04
(congenital megacolon)
Rectal and large intestinal Cannabidiol 26.0458 8.9678 2.9044 0.0040 0.0274 | 1.3051 8.4354 0.0040 | 1.54E+08 751.61
atresia/stenosis
Esophageal Cannabidiol 13.7132 4.8352 2.8361 0.0049 0.0253 0.7108 8.0437 0.0049 | 8.43E+07 464.16
atresia/tracheoesophageal
fistula
Diaphragmatic hernia Cannabidiol 21.8501 7.9675 2.7424 0.0065 0.0237 1.1678 7.5207 0.0065 | 4.96E+07 263.36
Cleft palate alone Cannabidiol 46.0706 20.0476 2.2981 0.0224 0.0172 2.7752 5.2811 0.0224 | 7.27E+06 18.43
Reduction deformity, Lower | Cannabidiol 42.6901 21.4422 1.9909 0.0492 0.0288 | 1.6564 3.9638 0.0492 | 3.07E+10 2.38
limbs
Transposition of great Cannabidiol 19.6282 9.8766 1.9873 0.0479 0.0106 1.4902 3.9496 0.0479 | 3.21E+05 1.71
arteries
Cloacal exstrophy Cannabidiol 76.8088 39.8261 1.9286 0.0563 0.0231 | 2.7733 3.7195 0.0563 | 1.76E+11 1.00
Epispadias Cannabidiol 19.8920 10.4475 1.9040 0.0604 0.0307 0.7526 3.6252 0.0604 | 5.58E+10 1.00
Clubfoot Cannabidiol 123.4731 76.7503 1.6088 0.1102 0.0123 5.7575 2.5881 0.1102 | 5.98E+08 1.00
Deletion 22q11.2 Cannabidiol 11.7674 7.4174 1.5865 0.1154 0.0128 0.5307 2.5169 0.1154 | 1.16E+09 1.00
Pulmonary valve atresia Cannabidiol 14.2898 9.1696 1.5584 0.1208 0.0075 | 1.0200 2.4285 0.1208 | 6.89E+05 1.00
Aniridia Cannabidiol 11.4134 7.6646 1.4891 0.1403 0.0146 0.4236 2.2174 0.1403 | 8.91E+10 1.00
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Cleft lip with and without Cannabidiol 47.9755 35.6346 1.3463 0.1812 0.0078 | 2.8627 1.8126 0.1812 | 8.40E+06 1.00
CHlflgoF;;I:(;?as Cannabidiol 215.6799 160.8491 1.3409 0.1811 0.0029 | 24.1209 1.7980 0.1811 | 6.84E+03 1.00
Interrupted aortic arch Cannabidiol 12.3060 10.7579 1.1439 0.2546 0.0022 | 0.8940 1.3085 0.2546 | 5.51E+05 1.00
Cleft lip with cleft palate Cannabidiol 18.8934 17.5531 1.0764 0.2832 8.75E-04 | 1.8366 1.1585 0.2832 | 2.33E+04 1.00
Bladder exstrophy Cannabidiol 1.2975 1.2080 1.0741 0.2838 6.22E-04 | 0.1585 1.1537 0.2838 | 3.44E+03 1.00
Total anomalou_s pulmonary Cannabidiol 41211 4.3730 0.9424 0.3473 -6.29E-04 | 0.5022 0.8881 0.3473 | 3.50E+03 1.00
Venous connection

Congenital cataract Cannabidiol 4.4981 7.4397 0.6046 0.5460 -0.0024 | 1.0520 0.3655 0.5460 97.42 1.00
Dextro-transposition of great | Cannabidiol 5.4634 9.0926 0.6009 0.5487 -0.0036 | 1.0480 0.3610 0.5487 229.30 1.00
arteries (d-TGA)

Aortic valve stenosis Cannabidiol 9.0139 15.8331 0.5693 0.5696 -0.0025 | 2.1657 0.3241 0.5696 87.79 1.00
Microcephalus Cannabidiol 25.8143 51.1470 0.5047 0.6150 -0.0082 | 3.7981 0.2547 0.6150 970.31 1.00
Cleft lip alone Cannabidiol 10.5197 24.3612 0.4318 0.6664 -0.0045 | 2.3987 0.1865 0.6664 107.70 1.00
Tetralogy of Fallot Cannabidiol 4.4464 10.6210 0.4186 0.6758 -0.0029 | 1.6091 0.1753 0.6758 24.21 1.00
Patent ductus arteriosus Cannabidiol 104.0952 399.2821 0.2607 0.7950 -0.0114 | 28.5501 0.0680 0.7950 54.70 1.00
Congenital posterior urethral | Cannabidiol 2.4488 20.4918 0.1195 0.9050 -0.0069 | 1.6854 0.0143 0.9050 6.96 1.00
\\//ae!;l/frsicular septal defect Cannabidiol -23.7333 139.2946 | -0.1704 0.8648 -0.0037 | 20.2028 0.0290 0.8648 5.27 NA
Choanal atresia Cannabidiol -1.0493 5.0746 | -0.2068 0.8363 -0.0036 | 0.7189 0.0428 0.8363 7.01 NA
Limb deficiencies (reduction | Cannabidiol -9.2029 28.6458 | -0.3213 0.7484 -0.0051 | 2.6608 0.1032 0.7484 46.05 NA
g?rtzclzszlentricle Cannabidiol -3.9066 11.5847 | -0.3372 0.7364 -0.0059 | 0.9895 0.1137 0.7364 72.15 NA
Pulmo_nary valve atresia and Cannabidiol -22.4845 34.4394 | -0.6529 0.5144 -0.0021 | 5.0837 0.4262 0.5144 111.44 NA
gzrs]t(;zlschisis Cannabidiol -9.7272 13.2026 | -0.7368 0.4619 -0.0018 | 1.9055 0.5428 0.4619 207.72 NA
Coarctation of the aorta Cannabidiol -27.6410 27.9781 | -0.9880 0.3240 -8.62E-05 | 4.2271 0.9760 0.3240 767.41 NA
Com_mon truncus (truncus Cannabidiol -9.2806 8.3564 | -1.1106 0.2677 8.54E-04 | 1.1939 1.2334 0.2677 | 2.36E+03 NA
X;%’;)cr)lstﬁ:\)lmia/microphthalmi Cannabidiol -14.7546 12.6122 | -1.1699 0.2431 0.0014 | 1.7384 1.3686 0.2431 | 4.52E+03 NA
Encephalocele Cannabidiol -11.9747 9.2992 | -1.2877 0.1989 0.0024 | 1.3294 1.6582 0.1989 | 7.26E+03 NA
Atrial septal defect Cannabidiol -610.8850 361.7188 | -1.6888 0.0925 0.0071 | 52.7719 2.8522 0.0925 | 7.52E+04 NA
Atrioventricular septal defect | Cannabidiol -31.8080 16.5300 | -1.9243 0.0554 0.0099 | 2.4231 3.7028 0.0554 | 3.08E+05 NA
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Hydrocephalus without spina | Cannabidiol -56.5887 54.7420 | -1.0337 0.3040 7.37E-04 | 4.0806 1.0686 0.3040 | 6.05E+05 NA
bifida

Holoprosencephaly Cannabidiol -146.0616 130.5839 | -1.1185 0.2652 0.0017 | 10.2919 1.2511 0.2652 | 8.12E+05 NA
Turner syndrome Cannabidiol -103.2404 93.9159 | -1.0993 0.2736 0.0015 7.1498 1.2084 0.2736 | 1.02E+06 NA
Hypoplastic left heart Cannabidiol -21.8275 9.7759 | -2.2328 0.0263 0.0137 1.4903 4.9854 0.0263 | 1.23E+06 NA
syndrome

Amniotic Bands Cannabidiol -8.5621 9.9023 | -0.8647 0.3909 -0.0044 0.5072 0.7476 0.3909 | 9.39E+06 NA
Double outlet right ventricle Cannabidiol -17.4959 10.8027 | -1.6196 0.1073 0.0099 1.0255 2.6230 0.1073 | 1.11E+07 NA
Anotia/microtia Cannabidiol -75.4583 28.5853 | -2.6398 0.0088 0.0215 4.1677 6.9683 0.0088 | 2.86E+07 NA
Renal agenesis/hypoplasia Cannabidiol -55.5432 21.1694 | -2.6237 0.0092 0.0213 | 3.0263 6.8841 0.0092 | 3.59E+07 NA
Omphalocele Cannabidiol -72.7238 25.9206 | -2.8056 0.0054 0.0273 | 3.5964 7.8716 0.0054 | 1.96E+08 NA
Tricuspid valve atresia and Cannabidiol -66.1395 18.6247 | -3.5512 4.53E-04 0.0414 | 2.7738 12.6108 | 4.53E-04 | 5.30E+09 NA
stenosis

Spina bifida without Cannabidiol -100.5390 26.3548 | -3.8148 1.67E-04 0.0446 | 4.0223 145529 | 1.67E-04 | 1.51E+10 NA
anencephalus

Trisomy 21 (Down Cannabidiol -294.7787 68.5834 | -4.2981 2.36E-05 0.0568 | 10.4764 18.4737 | 2.36E-05 | 2.64E+11 NA
syndrome)

Trisomy 13 Cannabidiol -159.8606 36.7241 | -4.3530 1.90E-05 0.0617 | 5.3524 18.9488 | 1.90E-05 | 1.27E+12 NA
Ebstein anomaly Cannabidiol -13.6797 3.1851 | -4.2949 2.46E-05 0.0620 | 0.4446 18.4464 | 2.46E-05 | 2.90E+12 NA
Reduction deformity, Upper Cannabidiol -50.5739 20.4153 | -2.4773 0.0150 0.0493 1.5707 6.1368 0.0150 | 1.06E+13 NA
limbs

Craniosynostosis Cannabidiol -128.6709 60.4738 | -2.1277 0.0361 0.0369 3.7943 45272 0.0361 | 5.05E+13 NA
Trisomy 18 Cannabidiol -376.7155 67.6238 | -5.5708 5.95E-08 0.0966 | 10.0334 31.0333 | 5.95E-08 | 1.38E+15 NA
Anencephalus Cannabidiol -405.9858 49.6283 | -8.1805 9.98E-15 0.1900 7.0466 66.9210 | 9.98E-15 | 1.18E+23 NA
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Table 4.: Numbers, Calculated Rates, Significance Levels and E-Values of Highest v. Lowest Cannabis Exposure Quintiles

Congenital Anomaly Numbers Calculated Rates Significance E-Values
High | Highest | Lowe | Lowest | Prevalence Ratio Atrributable Population Chi P- E- E-
est Not st Not (C.1) Fraction in the Attributable Risk Square | Value | Value- | Value -
Defec | Defect Defec | Defect Exposed (C.1.) (C.l) d Point Lower
t Count t Count
Coun Coun
t t
Cloacal exstrophy 444 | 1141378 177 | 2207096 4.8507 (4.075, 0.7938 (0.7545, 0.5675 (0.5102, | 386.73 | 2.13E- 9.17 7.61
5.774) 0.8268) 0.6182) 86
Congenital hip dislocation 773 | 722717 973 | 2078182 2.2845 (2.0785, 0.562 (0.5186, 0.2488 (0.2167, | 310.82 | 7.27E- 3.99 3.57
2.5108) 0.6014) 0.2796) 70
Turner syndrome 1577 | 956504 | 3159 | 2999000 1.5652 (1.4734, 0.3607 (0.3209, 0.1201 (0.1022, | 214.37 | 7.69E- 2.50 2.31
1.6628) 0.3982) 0.1376) 49
Coarctation of the aorta 3630 | 3825817 | 3787 | 5516098 1.382 (1.3205, 0.2762 (0.2425, 0.1352 (0.1157, | 195.57 | 9.74E- 2.11 1.97
1.4464) 0.3084) 0.1542) 45
Trisomy 18 7276 | 3863762 | 7853 | 5454321 1.3079 (1.2668, 0.2351 (0.2103, 0.1131 (0.0994, | 273.35 | 1.06E- 1.94 1.85
1.3504) 0.2591) 0.1266) 61
Hirschsprung disease (congenital 230 | 943071 372 | 2220573 1.4558 (1.2351, 0.313 (0.1903, 0.1196 (0.0625, 20.28 | 6.69E- 2.27 1.77
megacolon) 1.716) 0.4172) 0.1732) 06
Trisomy 13 3310 | 3809527 | 3677 | 5440392 1.2856 (1.2266, 0.222 (0.1846, 0.1052 (0.085, | 110.41 | 3.50E- 1.89 1.75
1.3474) 0.2577) 0.1248) 06
Holoprosencephaly 2307 | 2735097 | 2013 | 2952020 1.2369 (1.1651, 0.1914 (0.1416, 0.1022 (0.0731, 48.76 | 2.90E- 1.78 1.60
1.3132) 0.2383) 0.1304) 12
Diaphragmatic hernia 1210 | 3785854 | 1417 | 5518468 1.2447 (1.1528, 0.1966 (0.1325, 0.0905 (0.0578, 31.39 | 2.11E- 1.80 1.57
1.344) 0.2559) 0.1221) 08
Congenital posterior urethral 272 | 1222110 516 | 3083046 1.3298 (1.1482, 0.248 (0.129, 0.0856 (0.038, 1457 | 1.35E- 1.99 1.56
valves 1.5402) 0.3507) 0.1308) 04
Pulmonary valve atresia 622 | 3217047 573 | 3778215 1.2749 (1.1381, 0.2156 (0.1213, 0.1122 (0.0582, 17.67 | 2.62E- 1.87 1.53
1.4281) 0.2997) 0.1631) 05
Small intestinal atresia/stenosis 1125 | 2778116 957 | 2890697 1.2232 (1.1222, 0.1824 (0.1088, 0.0986 (0.0556, 21.05 | 4.47E- 1.75 1.49
1.3333) 0.2499) 0.1396) 06
Trisomy 21 (Down syndrome) 17749 | 4160407 | 20309 | 5441865 1.1431 (1.1203, 0.1247 (0.107, 0.0582 (0.0493, | 169.07 | 4.02E- 1.55 1.49
1.1664) 0.1422) 0.067) 26
Deletion 22¢11.2 129 | 1175941 236 | 2919417 1.357 (1.0949, 0.2631 (0.0867, 0.093 (0.0215, 7.83 | 0.0051 2.05 1.42
1.6819) 0.4054) 0.1592)
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Double outlet right ventricle 854 | 2779998 684 | 2647487 1.189 (1.0752, 0.1589 (0.07, 0.0883 (0.0359, 1141 | 7.31E- 1.66 1.36
1.3148) 0.2394) 0.1378) 04

Single ventricle 435 | 2750022 377 | 2891287 1.2131 (1.0568, 0.1757 (0.0538, 0.0941 (0.02486, 7.56 | 0.0060 1.72 1.30
1.3925) 0.2818) 0.1586)

Hypoplastic left heart syndrome 1608 | 3991321 | 2023 | 5517862 1.0989 (1.0292, 0.0899 (0.0284, 0.0398 (0.01186, 7.97 | 0.0048 1.43 1.20
1.1732) 0.1476) 0.0673)

Epispadias 93 733098 214 | 2211891 1.3112 (1.0279, 0.2373 (0.0271, 0.0719 (9e-04, 479 | 0.0287 1.95 1.20
1.6726) 0.4021) 0.1379)

Biliary atresia 303 | 3696288 367 | 5330359 1.1906 (1.0226, 0.1601 (0.0221, 0.0724 (0.0063, 5.06 | 0.0244 1.67 1.17
1.3862) 0.2786) 0.1341)

Esophageal 924 | 3774953 1207 | 5460967 1.1074 (1.0165, 0.097 (0.0162, 0.0421 (0.0058, 5.45 | 0.0195 145 1.15

atresia/tracheoesophageal fistula 1.2065) 0.1711) 0.077)

Clubfoot 1709 | 1072816 | 4038 | 2722058 1.0739 (1.0148, 0.0687 (0.0145, 0.0204 (0.0038, 6.09 | 0.0136 1.36 1.14
1.1364) 0.1199) 0.0367)

Spina bifida without anencephalus 4268 | 4086425 | 5488 | 5514397 1.0495 (1.0083, 0.0471 (0.0082, 0.0206 (0.0033, 5,59 | 0.0181 1.28 1.10
1.0923) 0.0844) 0.0376)

Atrioventricular septal defect 2405 | 3784659 | 3324 | 5516561 1.0546 (1.0007, 0.0518 (7e-04, 0.0217 (-1e-04, 3.94 | 0.0470 1.29 1.03
1.1114) 0.1002) 0.043)

Aniridia 32 | 866880 55 | 2154589 1.4461 (0.9353, 0.3085 (-0.0692, 0.1135 (-0.0407, 2.78 | 0.0952 2.25 1.00
2.2359) 0.5527) 0.2448)

Total anomalous pulmonary 470 | 3196783 494 | 3532159 1.0512 (0.9265, 0.0487 (-0.0793, 0.0238 (-0.0382, 0.60 | 0.4381 1.28 1.00

VeNnous connection 1.1928) 0.1616) 0.0821)

Hydrocephalus without spina 1057 | 954941 | 2408 | 2276248 1.0463 (0.9733, 0.0442 (-0.0274, 0.0135 (-0.0085, 1.50 | 0.2200 1.27 1.00

bifida 1.1248) 0.1109) 0.035)

Interrupted aortic arch 184 | 2761460 180 | 2801964 1.0372 (0.8446, 0.0359 (-0.184, 0.0181 (-0.0893, 0.12 | 0.7274 1.23 1.00
1.2738) 0.2149) 0.115)

Bladder exstrophy 60 | 2670828 115 | 5256233 1.0268 (0.7515, 0.0261 (-0.3307, 0.0089 (-0.103, 0.03 | 0.8681 1.19 1.00
1.4029) 0.2872) 0.1095)

Transposition of great arteries 1049 | 2418662 2201 | 5131566 1.0112 (0.9395, 0.0111 (-0.0644, 0.0036 (-0.0204, 0.09 | 0.7669 112 1.00
1.0884) 0.0812) 0.0269)

Anotia/microtia 3396 | 3783668 | 4802 | 5355143 1.0009 (0.9579, 9e-04 (-0.0439, 4e-04 (-0.018, 0.00 | 0.9670 1.03 1.00
1.0459) 0.0439) 0.0184)

Cleft lip alone 1178 | 2903931 1366 | 3261461 0.9685 (0.8959, -0.0325 (-0.1161, -0.015 (-0.0523, 0.65 | 0.4216 122 NA
1.0471) 0.0449) 0.0209)

Tetralogy of Fallot 2063 | 3991594 2966 | 5516919 0.9613 (0.9088, -0.0402 (-0.1003, -0.0165 (-0.0402, 1.89 | 0.1692 124 NA
1.0169) 0.0166) 0.0067)

Cleft palate alone 2483 | 3990680 | 3402 | 5227758 0.9561 (0.9079, -0.0459 (-0.1014, -0.0194 (-0.0418, 2.89 | 0.0892 1.26 NA
1.0069) 0.0068) 0.0026)

Cleft lip with cleft palate 1907 | 3032425 2001 | 3038883 0.9551 (0.897, -0.047 (-0.1148, -0.0229 (-0.0547, 2.06 | 0.1508 127 NA
1.0169) 0.0166) 0.0079)

Congenital cataract 670 | 3755999 1016 | 5381175 0.9448 (0.857, -0.0584 (-0.1669, -0.0232 (-0.0637, 1.30 | 0.2537 131 NA
1.0416) 0.0399) 0.0157)
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Encephalocele 932 | 3791070 | 1446 | 5518439 0.9382 (0.8641, -0.0658 (-0.1573, -0.0258 (-0.0594, 2.31 | 0.1289 1.33 NA
1.0187) 0.0184) 0.0068)
Cleft lip with and without cleft 969 | 1026247 | 2304 | 2286080 0.9369 (0.8691, -0.0673 (-0.1504, -0.0199 (-0.0428, 2.90 | 0.0887 1.34 NA
palate 1.0099) 0.0098) 0.0025)
Gastroschisis 2165 | 4016001 | 3073 | 5301775 0.9301 (0.8803, -0.0751 (-0.1359, - -0.0311 (-0.0548, - 6.67 | 0.0098 1.36 NA
0.9827) 0.0176) 0.0079)
Anencephalus 4669 | 4093278 | 6782 | 5513103 0.9272 (0.8933, -0.0784 (-0.1193, - -0.032 (-0.0477, - 15.77 | 7.15E- 1.37 NA
0.9625) 0.0389) 0.0164) 05
Omphalocele 1876 | 3828924 | 2621 | 4919500 0.9196 (0.8667, -0.0874 (-0.1537, - -0.0364 (-0.0624, - 7.68 | 0.0056 1.40 NA
0.9758) 0.0248) 0.0111)
Rectal and large intestinal 1581 | 3785483 | 2532 | 5459642 0.9006 (0.8457, -0.1104 (-0.1824, - -0.0424 (-0.0679, - 10.68 | 0.0011 1.46 NA
atresia/stenosis 0.959) 0.0428) 0.0176)
Aortic valve stenosis 1391 | 3730418 | 2298 | 5517587 0.8953 (0.8376, -0.1169 (-0.1938, - -0.0441 (-0.0706, - 10.61 | 0.0011 1.48 NA
0.957) 0.045) 0.0182)
Pyloric stenosis 1264 | 709529 | 4414 | 2216531 0.8946 (0.8403, -0.1176 (-0.1897, - -0.0262 (-0.0406, - 12.19 | 4.82E- 1.48 NA
0.9524) 0.0499) 0.012) 04
Ebstein anomaly 360 | 3742751 592 | 5439310 0.8838 (0.7752, -0.1315 (-0.2899, -0.0497 (-0.103, 3.42 | 0.0643 1.52 NA
1.0075) 0.0074) 0.001)
Pulmonary valve atresia and 2810 | 2731571 | 6450 | 5513435 0.8793 (0.8412, -0.1371 (-0.1885, - -0.0416 (-0.0557, - 3237 | 1.27E- 1.53 NA
stenosis 0.9192) 0.0878) 0.0277) 08
Obstructive genitourinary defect 2840 | 953158 | 7681 | 2213264 0.8586 (0.8223, -0.1642 (-0.2153, - -0.0443 (-0.0565, - 48.16 | 3.92E- 1.60 NA
0.8964) 0.1152) 0.0323) 12
Amniotic Bands 32 | 483538 162 | 2064910 0.8435 (0.5773, -0.1855 (-0.732, -0.0306 (-0.0971, 0.78 | 0.3785 1.65 NA
1.2325) 0.1886) 0.0319)
Reduction deformity, Lower limbs 215 | 1012889 578 | 2278078 0.8366 (0.7153, -0.1953 (-0.3978, - -0.0529 (-0.0986, - 5.00 | 0.0253 1.68 NA
0.9784) 0.0221) 0.0092)
Choanal atresia 423 | 3737112 798 | 5467622 0.7755 (0.6893, -0.2894 (-0.4507, - -0.1003 (-0.1461, - 17.96 | 2.26E- 1.90 NA
0.8726) 0.146) 0.0562) 05
Limb deficiencies (reduction 1947 | 3044005 | 2616 | 3159025 0.7724 (0.7284, -0.2944 (-0.3726, - -0.1256 (-0.1542, - 7481 | 2.33E- 1.91 NA
defects) 0.8191) 0.2207) 0.0978) 06
Dextro-transposition of great 787 | 3139477 | 1263 | 3768524 0.748 (0.6843, -0.3368 (-0.4613, - -0.1293 (-0.1686, - 4116 | 1.40E- 2.01 NA
arteries (d-TGA) 0.8176) 0.223) 0.0914) 10
Ventricular septal defect 10038 | 2237688 | 33128 | 5486757 0.743 (0.7265, -0.3439 (-0.3742, - -0.08 (-0.0856, - | 681.68 | 0.0033 2.02 NA
0.7598) 0.3143) 0.0744)
Hypospadias 19468 | 4144576 | 34580 | 5427594 0.7373 (0.7244, -0.3541 (-0.378, - -0.1275 (-0.1347, - | 1159.9 | 1.38E- 2.05 NA
0.7504) 0.3306) 0.1205) 3 05
Common truncus (truncus 265 | 3819026 521 | 5470721 0.7286 (0.6285, -0.3724 (-0.5911, - -0.1256 (-0.1831, - 17.75 | 2.51E- 2.09 NA
arteriosus) 0.8447) 0.1838) 0.0708) 05
Atrial septal defect 17822 | 3769242 | 36035 | 5426139 0.712 (0.6993, -0.4019 (-0.4272, - -0.133(-0.1397, - | 1381.7 | 1.09E- 2.15 NA
0.7249) 0.377) 0.1263) 3 08
Microcephalus 595 | 955403 | 1996 | 2276660 0.7103 (0.6482, -0.4074 (-0.5423, - -0.0936 (-0.1168, - 54.10 | 1.90E- 2.16 NA
0.7785) 0.2843) 0.0708) 13
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Reduction deformity, Upper limbs 381 998572 1239 | 2277417 0.7013 (0.6252, -0.4256 (-0.5991, - -0.1001 (-0.1302, - 37.05 | 1.15E- 2.20 NA
0.7867) 0.271) 0.0708) 09
Anophthalmia/microphthalmia 1081 | 3720258 | 2643 | 5328083 0.5858 (0.5457, -0.7068 (-0.8319, - -0.2052 (-0.2302, - | 224.65 | 1.48E- 2.81 NA
0.6287) 0.5902) 0.1807) 12
Patent ductus arteriosus 3025 | 952973 | 10938 | 1995801 0.5792 (0.5563, -0.7226 (-0.7932, - -0.1565 (-0.1667, - | 721.65 | 5.95E- 2.84 NA
0.603) 0.6547) 0.1465) 39
Craniosynostosis 709 | 1970408 1706 | 2570932 0.5423 (0.4968, -0.8436 (-1.0123, - -0.2477 (-0.2802, - | 193.44 | 7.18E- 3.09 NA
0.5919) 0.689) 0.216) 05
Renal agenesis/hypoplasia 1705 | 3788008 | 4576 | 5457598 0.5368 (0.5078, -0.8621 (-0.9686, - -0.234 (-0.2528, - | 496.12 | 0.0028 3.13 NA
0.5675) 0.7614) 0.2155)
Tricuspid valve atresia and 643 | 3773660 | 1767 | 5518118 0.5321 (0.4862, -0.879 (-1.0565, - -0.2345 (-0.2646, - | 193.92 | 3.93E- 3.16 NA
stenosis 0.5824) 0.7169) 0.2052) 04




Table 5.: Numbers,

Calculated Rates, Significance Levels and E-Values of Highest v.
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Lowest Cannabidiol Exposure Quintiles

Congenital Anomaly Numbers Calculated Rates Significance E-Values
High | Highest | Lowe | Lowest | Prevalence Ratio Atrributable Population Chi P-value | E- E-
est Not st Not (C.1) Fraction in the Attributable Risk Squar Value | Value
Defec | Defect Defec | Defect Exposed (C.1.) (C.1) ed - Point | -
t Count t Count Lower
Coun Coun
t t
Obstructive genitourinary defect 7247 | 248485 145 95592 1.9227 (1.631, 0.4792 (0.3862, 0.4698 (0.3771, | 62.848 | 2.22E-15 3.25 2.64
4 2.2665) 0.5581) 0.5486) 0
Pulmonary valve atresia 396 | 255240 462 | 402422 1.3514 (1.1817, 0.26 (0.1537, 0.12 (0.0638, | 19.481 | 1.02E-05 2.04 1.64
0 7 1.5455) 0.3529) 0.1729) 8
Small intestinal atresia/stenosis 566 | 140209 | 1224 | 381521 1.2583 (1.1389, 0.2052 (0.122, 0.0649 (0.035, | 20.510 | 5.93E-06 1.83 1.54
5 8 1.3901) 0.2806) 0.0939) 7
Cloacal exstrophy 238 | 834373 661 | 300740 1.2978 (1.1191, 0.2294 (0.1064, 0.0607 (0.0232, | 11.954 | 5.45E-04 1.92 1.48
9 1.5051) 0.3355) 0.0969) 8
Cleft lip with and without cleft 3437 | 379171 33 55337 1.52 (1.0787, 0.3419 (0.0729, 0.3387 (0.0713, | 5.8113 0.0159 241 1.37
palate 7 2.1418) 0.5329) 0.529)
Clubfoot 1057 | 721190 | 5114 | 383859 1.1001 (1.0296, 0.0909 (0.0287, 0.0156 (0.0043, | 7.9686 0.0048 1.43 1.20
3 1.1755) 0.1491) 0.0267)
Biliary atresia 385 | 508373 265 | 419277 1.1982 (1.0247, 0.1654 (0.0241, 0.098 (0.0104, | 5.1462 0.0233 1.69 1.18
3 4 1.4011) 0.2863) 0.1778)
Trisomy 21 (Down syndrome) 7317 | 529188 | 5706 | 435762 1.0559 (1.02, 0.0529 (0.0196, 0.0297 (0.0107, | 9.4889 0.0021 1.30 1.16
5 0 1.0932) 0.0851) 0.0484)
Double outlet right ventricle 282 | 140237 745 | 428299 1.156 (1.008, 0.135 (0.0079, 0.0371 (1e-04, | 4.3080 0.0379 1.58 1.10
9 3 1.3258) 0.2457) 0.0726)
Diaphragmatic hernia 1433 | 503556 | 1143 | 436218 1.0861 (1.0048, 0.0792 (0.0048, 0.0441 (0.0018, | 4.3354 0.0373 1.39 1.07
0 3 1.1739) 0.1481) 0.0845)
Trisomy 13 597 | 516761 443 | 435377 1.1354 (1.0041, 0.1192 (0.0041, 0.0684 (4e-04, | 4.1053 0.0427 1.53 1.07
9 9 1.2839) 0.2211) 0.1319)
Single ventricle 136 | 139758 315 | 396302 1.2243 (1.0012, 0.1832 (0.0012, 0.0552 (-0.0038, | 3.9021 0.0482 1.75 1.04
4 3 1.497) 0.332) 0.1108)
Spina bifida without anencephalus 1838 | 529736 | 1509 | 436181 1.0029 (0.9369, 0.0029 (-0.0673, 0.0016 (-0.0364, | 0.0070 0.9332 1.06 1.00
4 7 1.0736) 0.0685) 0.0382)
Rectal and large intestinal 1883 | 446869 | 1830 | 436149 1.0043 (0.9417, 0.0043 (-0.0619, 0.0022 (-0.0309, | 0.0169 0.8966 1.07 1.00
atresia/stenosis 6 6 1.071) 0.0663) 0.0342)
Anotia/microtia 1049 | 513892 856 | 422140 1.0067 (0.9198, 0.0066 (-0.0872, 0.0036 (-0.0471, | 0.0208 0.8853 1.09 1.00
5 2 1.1018) 0.0924) 0.052)
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Transposition of great arteries 1324 | 420444 | 1356 | 436197 1.013 (0.9391, 0.0128 (-0.0648, 0.0063 (-0.0315, | 0.1114 0.7385 1.13 1.00
4 0 1.0927) 0.0848) 0.0428)

Aortic valve stenosis 961 | 508375 806 | 436252 1.0232 (0.9317, 0.0226 (-0.0733, 0.0123 (-0.0393, | 0.2296 0.6318 1.18 1.00
8 0 1.1236) 0.11) 0.0613)

Hypoplastic left heart syndrome 1308 | 529789 | 1048 | 436227 1.0277 (0.9475, 0.0269 (-0.0554, 0.0149 (-0.0305, | 0.4336 0.5102 1.20 1.00
4 8 1.1147) 0.1029) 0.0584)

Cleft lip alone 478 | 144465 | 1378 | 428236 1.0282 (0.9266, 0.0275 (-0.0792, 0.0071 (-0.0199, | 0.2753 0.5998 1.20 1.00
3 0 1.141) 0.1235) 0.0333)

Trisomy 18 1219 | 519659 983 | 436234 1.041 (0.9571, 0.0394 (-0.0448, 0.0218 (-0.0248, | 0.8786 0.3486 1.25 1.00
0 3 1.1323) 0.1168) 0.0663)

Atrioventricular septal defect 2286 | 503470 | 1877 | 436144 1.055 (0.9925, 0.0521 (-0.0075, 0.0286 (-0.0045, | 2.9581 0.0854 1.30 1.00
7 9 1.1215) 0.1083) 0.0607)

Patent ductus arteriosus 7335 | 248476 111 40496 1.077 (0.8927, 0.0713 (-0.1199, 0.0702 (-0.1181, | 0.5999 0.4386 1.36 1.00
6 1.2993) 0.2298) 0.2268)

Total anomalous pulmonary venous 389 | 307325 459 | 409554 1.1294 (0.9867, 0.1146 (-0.0135, 0.0526 (-0.008, | 3.1216 0.0773 1.51 1.00
connection 3 8 1.2928) 0.2264) 0.1095)

Deletion 22011.2 53 | 718890 216 | 355741 1.2142 (0.8991, 0.1764 (-0.1122, 0.0348 (-0.0241, | 1.6082 0.2047 1.72 1.00
4 1.6398) 0.3901) 0.0902)

Congenital hip dislocation 1807 | 212674 27 40580 1.277 (0.8732, 0.2168 (-0.1452, 0.2136 (-0.1434, | 1.5973 0.2063 1.87 1.00
9 1.8676) 0.4643) 0.4591)

Hirschsprung disease (congenital 591 | 258179 17 95720 1.2889 (0.7958, 0.2241 (-0.2565, 0.2178 (-0.2497, | 1.0699 0.3010 1.90 1.00
megacolon) 4 2.0875) 0.5209) 0.5105)

Gastroschisis 2169 | 498546 | 1842 | 421566 0.9957 (0.9357, -0.0043 (-0.0686, -0.0023 (-0.0366, | 0.0185 0.8919 1.07 NA
6 0 1.0595) 0.0561) 0.0308)

Cleft lip with cleft palate 1220 | 212667 | 2452 | 422591 0.9887 (0.9231, -0.0114 (-0.0833, -0.0038 (-0.027, | 0.1054 0.7455 1.12 NA
4 6 1.059) 0.0557) 0.0188)

Coarctation of the aorta 2728 | 519309 | 2332 | 436099 0.9824 (0.9295, -0.0179 (-0.0758, -0.0097 (-0.0402, | 0.3976 0.5283 1.15 NA
9 4 1.0382) 0.0368) 0.02)

Anencephalus 920 | 524070 775 | 427944 0.9694 (0.881, -0.0316 (-0.135, -0.0172 (-0.0713, | 0.4074 0.5233 121 NA
6 9 1.0666) 0.0624) 0.0343)

Esophageal 1127 | 513884 088 | 436233 0.9683 (0.889, -0.0327 (-0.1248, -0.0174 (-0.0648, | 0.5454 0.4602 1.22 NA
atresia/tracheoesophageal fistula 7 8 1.0547) 0.0518) 0.0278)

Tetralogy of Fallot 2121 | 528662 | 1815 | 436151 0.9641 (0.9055, -0.0372 (-0.1043, -0.0201 (-0.0551, | 1.3068 0.2530 1.23 NA
2 1 1.0265) 0.0258) 0.0138)

Encephalocele 411 | 491162 370 | 424101 0.9591 (0.8335, -0.0426 (-0.1998, -0.0224 (-0.1008, | 0.3388 0.5605 1.25 NA
0 5 1.1038) 0.094) 0.0504)

Congenital posterior urethral valves 138 | 857092 685 | 403620 0.9487 (0.7901, -0.0541 (-0.2655, -0.0091 (-0.0405, | 0.3184 0.5725 1.29 NA
0 1.1391) 0.1221) 0.0214)

Interrupted aortic arch 86 | 139763 247 | 374464 0.9329 (0.7299, -0.072 (-0.3701, -0.0186 (-0.0852, | 0.3082 0.5788 1.35 NA
4 1 1.1923) 0.1613) 0.044)

Dextro-transposition of great 710 | 312461 928 | 380309 0.9312 (0.8445, -0.0738 (-0.1841, -0.032 (-0.0767, | 2.0431 0.1529 1.36 NA
arteries (d-TGA) 0 3 1.0268) 0.0261) 0.0108)
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Congenital cataract 718 | 512084 664 | 424384 0.8961 (0.8064, -0.1159 (-0.2401, - -0.0602 (-0.1199, - | 4.1522 0.0416 1.48 NA
5 0 0.9959) 0.0041) 0.0036)
Bladder exstrophy 105 | 502847 92 | 389653 0.8844 (0.6685, -0.1307 (-0.4959, -0.0697 (-0.2418, | 0.7411 0.3893 1.52 NA
5 1 1.17) 0.1453) 0.0786)
Cleft palate alone 2399 | 457916 | 2605 | 436072 0.877 (0.8297, -0.1402 (-0.2052, - -0.0672 (-0.096, - | 21.536 | 3.47E-06 1.54 NA
5 1 0.927) 0.0787) 0.0392) 0
Pyloric stenosis 3934 | 224296 192 95545 0.8728 (0.755, -0.1454 (-0.3238, -0.1387 (-0.3071, | 3.3864 0.0657 1.55 NA
2 1.009) 0.0089) 0.0081)
Pulmonary valve atresia and 3896 | 510918 | 3880 | 435944 0.8568 (0.8195, -0.167 (-0.22, - -0.0837 (-0.1081, - | 46.505 | 9.14E-12 1.61 NA
stenosis 3 6 0.8957) 0.1163) 0.0598) 1
Limb deficiencies (reduction 558 | 148507 | 1830 | 414297 0.8506 (0.7737, -0.1755 (-0.2924, - -0.041 (-0.0643, - | 11.210 | 8.14E-04 1.63 NA
defects) 9 2 0.9352) 0.0692) 0.0182) 0
Hydrocephalus without spina bifida | 2149 | 361880 68 95669 0.8355 (0.6562, -0.1968 (-0.5234, -0.1907 (-0.5046, | 2.1340 0.1441 1.68 NA
6 1.0637) 0.0598) 0.0576)
Amniotic Bands 270 | 258589 12 95725 0.8329 (0.4672, -0.2006 (-1.1404, -0.1921 (-1.0736, | 0.3851 0.5349 1.69 NA
9 1.485) 0.3266) 0.3147)
Ebstein anomaly 334 | 510713 323 | 410524 0.8312 (0.7133, -0.2031 (-0.4019, - -0.1032 (-0.1924, - | 5.6284 0.0177 1.70 NA
3 5 0.9686) 0.0324) 0.0207)
Choanal atresia 521 | 509639 542 | 431131 0.8132 (0.721, -0.2297 (-0.3868, - -0.1126 (-0.1801, - | 11.400 | 7.34E-04 1.76 NA
6 9 0.9171) 0.0904) 0.0489) 6
Omphalocele 759 | 467320 785 | 390128 0.8072 (0.7305, -0.2388 (-0.3688, - -0.1174 (-0.1736, - | 17.773 | 2.49E-05 1.78 NA
3 5 0.8919) 0.1212) 0.0639) 3
Common truncus (truncus 278 | 462069 336 | 424024 0.7593 (0.6477, -0.317 (-0.5439, - -0.1435 (-0.2289, - | 11.611 | 6.55E-04 1.96 NA
arteriosus) 0 6 0.89) 0.1235) 0.0642) 7
Reduction deformity, Lower limbs 537 | 378050 18 95719 0.7554 (0.4722, -0.3238 (-1.1173, -0.3133 (-1.0687, | 1.3798 0.2401 1.98 NA
5 1.2082) 0.1723) 0.1662)
Ventricular septal defect 1455 | 392900 | 2143 | 434189 0.7507 (0.735, -0.3305 (-0.3588, - -0.1337 (-0.1434, - | 714.83 | 2.2e-320 1.99 NA
7 2 0 6 0.7667) 0.3029) 0.1241) 36
Craniosynostosis 470 | 112006 | 1679 | 299217 0.7478 (0.6751, -0.337 (-0.481, - -0.0737 (-0.098, - | 31.215 | 2.31E-08 2.01 NA
1 2 0.8284) 0.2071) 0.05) 6
Hypospadias 2458 | 515752 | 2751 | 419687 0.7271 (0.7147, -0.3728 (-0.3965, - -0.1759 (-0.1855, - | 1321.8 1.02E- 2.09 NA
7 2 5 5 0.7398) 0.3495) 0.1664) 209 289
Anophthalmia/microphthalmia 561 | 510830 636 | 419240 0.7239 (0.6462, -0.3813 (-0.5474, - -0.1787 (-0.2431, - | 31.379 | 2.12E-08 211 NA
5 3 0.811) 0.2331) 0.1176) 0
Turner syndrome 125 | 845663 838 | 407907 0.7195 (0.5962, -0.3898 (-0.6771, - -0.0506 (-0.0765, - | 11.893 | 5.63E-04 2.13 NA
0 0.8683) 0.1517) 0.0253) 2
Microcephalus 1436 | 249066 81 95656 0.6809 (0.5443, -0.4683 (-0.8365, - -0.4433 (-0.7838, - | 11.459 | 7.11E-04 2.30 NA
5 0.8518) 0.1739) 0.1678) 1
Holoprosencephaly 198 | 137261 882 | 395449 0.6468 (0.5544, -0.5461 (-0.8037, - -0.1001 (-0.1316, - | 31.192 | 2.34E-08 2.46 NA
0 6 0.7545) 0.3252) 0.0695) 3
Epispadias 230 | 225008 41 | 257008 0.6408 (0.4596, -0.5606 (-1.1756, - -0.4758 (-0.9565, - | 7.0075 0.0081 2.50 NA
2 0.8933) 0.1194) 0.1132)
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Renal agenesis/hypoplasia 1586 | 501191 | 2240 | 436108 0.6161 (0.5777, | -0.6228 (-0.7306, - | -0.2582 (-0.2922, - | 222.03 | 1.63E-50 |  2.63 NA
7 6 0.657) 0.5217) 0.2251) 95

Atrial septal defect 2041 | 501658 | 3379 | 432952 05212 (0.5122, | -0.9115 (-0.9449, - -0.3432 (-0.352, - | 55635 | 2.2e-320 | 3.23 NA
1 2 8 8 0.5304) 0.8787) 0.3345) 773

Reduction deformity, Upper limbs 1001 | 376589 50 | 95687 0.5087 (0.3829, | -0.9653 (-1.6107, - | -0.9194 (-1.5155, - | 22.586 | 2.01E-06 | 3.34 NA
0 0.6758) 0.4795) 0.4646) 4

Tricuspid valve atresia and stenosis 510 | 505982 | 973 | 436235 0.4519 (0.406, | -1.2126 (-1.4628, - -0.417 (-0.4702, - | 222.40 | 1.36E-50 | 3.85 NA
5 3 0.503) 0.9878) 0.3658) 58




Table 6.: Prevalence Ratios by Substance
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Congenital Anomaly

Cigarettes
Prevalence Ratio

Binge Alcohol
Prevalence Ratio

Analgesics
Prevalence Ratio

Ccoaine Prevalence
Ratio

Cannabis
Prevalence Ratio

Cannabidiol
Prevalence Ratio

Obstructive genitourinary defect

0.92 (0.87, 0.97)

1.02 (0.97, 1.07)

0.9 (0.85, 0.94)

1.17 (1.11,1.23)

0.86 (0.82, 0.9)

1.92 (1.63, 2.27)

Cleft lip with and without cleft palate

1.06 (0.98, 1.13)

0.95 (0.88, 1.02)

1.3(1.2,1.41)

1.02 (0.94, 1.11)

0.94 (0.87, 1.01)

1.52 (1.08, 2.14)

Pulmonary valve atresia

1.06 (0.91, 1.22)

0.45 (0.38, 0.54)

1.64 (1.46, 1.85)

0.97 (0.86, 1.1)

1.27 (1.1, 1.43)

1.35 (1.18, 1.55)

Cloacal exstrophy

2.84 (2.44, 3.31)

0.85 (0.73, 0.98)

1.61 (1.41, 1.83)

0.63 (0.54,0.72)

4.85 (4.08,5.77)

1.3 (112, 1.51)

Hirschsprung disease (congenital megacolon)

1.12 (0.95, 1.33)

0.57 (0.47,0.7)

1.06 (0.89, 1.27)

1.01 (0.84, 1.21)

1.46 (1.24, 1.72)

1.29 (0.8, 2.09)

Congenital hip dislocation

0.93 (0.84, 1.04)

1.09 (0.97, 1.24)

0.95 (0.85, 1.06)

1.85 (1.65, 2.07)

2.28 (2.08, 2.51)

1.28(0.87, 1.87)

Small intestinal atresia/stenosis

0.86 (0.77, 0.97)

0.87 (0.77, 0.97)

1.09 (0.99, 1.2)

11(1,1.20)

1.22 (1.12,1.33)

1.26 (1.14, 1.39)

Single ventricle 0.84 (0.66, 1.05) 0.46 (0.36, 0.59) 1.07 (0.93, 1.23) 0.81 (0.7, 0.93) 1.21 (1.06, 1.39) 122 (1,15)
Deletion 22¢11.2 0.59 (0.45, 0.77) 1.26 (0.98, 1.6) 2.93 (2.39, 3.58) 1.81 (1.46, 2.25) 1.36 (1.09, 1.68) 1.21(0.9, 1.64)
Biliary atresia 1.02 (0.87, 1.2) 0.63 (051, 0.77) 0.88 (0.74, 1.05) 1.12 (0.94, 1.32) 1.19 (1.02, 1.39) 1.2 (1.02,1.4)
Double outlet right ventricle 1.04 (0.92, 1.17) 0.69 (0.6, 0.79) 1.12 (1.01, 1.23) 0.91 (0.82, 1.01) 1.19 (1.08, 1.31) 1.16 (1.01, 1.33)
Trisomy 13 0.62 (0.53,0.71) 0.97 (0.85, 1.1) 0.86 (0.82, 0.9) 1.76 (1.67, 1.85) 1.29 (1.23, 1.35) 1.14 (1, 1.28)

Total anomalous pulmonary venous connection

0.62 (0.52, 0.74)

0.62 (0.5, 0.75)

1.44 (1.24, 1.66)

1.31(1.13,152)

1.05 (0.93, 1.19)

1.13(0.99, 1.29)

Clubfoot

1.02 (0.97, 1.08)

0.88 (0.83, 0.93)

1.03 (0.97, 1.1)

0.99 (0.94, 1.05)

1.07 (1.01, 1.14)

1.1(1.03, 1.18)

Diaphragmatic hernia

1.22 (1.13,1.33)

0.83(0.76, 0.91)

1.15 (1.06, 1.26)

0.87 (0.79, 0.95)

1.24 (1.15, 1.34)

1.09 (1, 1.17)

Patent ductus arteriosus

0.96 (0.92, 1)

0.72 (0.69, 0.75)

1.13 (1.08, 1.18)

0.79 (0.75, 0.82)

0.58 (0.56, 0.6)

1.08 (0.89, 1.3)

Trisomy 21 (Down syndrome)

0.83 (0.8, 0.87)

1.03 (0.99, 1.07)

1.02 (0.99, 1.04)

1.13(1.11, 1.16)

1.14 (1.12, 1.17)

1.06 (1.02, 1.09)

Atrioventricular septal defect

0.95 (0.89, 1.01)

0.79 (0.74, 0.84)

1.07 (1.01, 1.13)

0.92 (0.87, 0.98)

1.05 (1, 1.11)

1.06 (0.99, 1.12)

Trisomy 18

0.66 (0.6, 0.73)

0.89 (0.82, 0.98)

1.06 (1.02, 1.1)

1.34 (1.29, 1.39)

1.31(1.27, 1.35)

1.04 (0.96, 1.13)
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Cleft lip alone

1.06 (0.96, 1.17)

1.04 (0.94, 1.15)

1.18 (1.08, 1.28)

0.82 (0.75, 0.89)

0.97 (0.9, 1.05)

1.03(0.93, 1.14)

Hypoplastic left heart syndrome

12(11,1.3)

0.69 (0.62, 0.75)

1.12 (1.04, 1.19)

0.91 (0.85, 0.98)

1.1(1.03,1.17)

1.03 (0.95, 1.11)

Aortic valve stenosis

0.96 (0.87, 1.06)

0.71 (0.64, 0.8)

1.59 (1.48, 1.71)

1.03 (0.96, 1.11)

0.9 (0.84, 0.96)

1.02 (0.93, 1.12)

Transposition of great arteries

1.25 (1.16, 1.36)

0.8(0.73,0.87)

1.23(1.14,1.32)

0.85 (0.79, 0.91)

1.01 (0.94, 1.09)

1.01 (0.94, 1.09)

Anotia/microtia

0.37 (0.32, 0.42)

0.87 (0.77, 0.97)

1.38 (1.3, 1.46)

1.62 (153, 1.71)

1(0.96, 1.05)

1.01(0.92, 1.1)

Rectal and large intestinal atresia/stenosis 1.2 (1.12,1.28) 0.84 (0.78, 0.9) 1.08 (1, 1.16) 0.87(0.81, 0.94) 0.9 (0.85, 0.96) 1(0.94, 1.07)
Spina bifida without anencephalus 1.04 (0.97, 1.11) 0.83(0.77,0.9) 1.36 (1.3, 1.42) 1(0.96, 1.05) 1.05 (1.01, 1.09) 1(0.94, 1.07)
Gastroschisis 1(0.94, 1.07) 0.89 (0.83, 0.96) 1.47 (1.39, 1.56) 0.97 (0.91, 1.03) 0.93 (0.88, 0.98) 1(0.94, 1.06)

Cleft lip with cleft palate

1.14 (1.06, 1.22)

0.86 (0.79, 0.93)

1.37 (1.28, 1.46)

0.93 (0.87, 0.99)

0.96 (0.9, 1.02)

0.99 (0.92, 1.06)

Coarctation of the aorta

1.16 (1.09, 1.23)

0.7 (0.66, 0.75)

1.16 (1.1, 1.22)

0.87 (0.82, 0.92)

1.38 (1.32, 1.45)

0.98 (0.93, 1.04)

Anencephalus

0.89 (0.81, 0.99)

0.7 (0.63, 0.78)

1.36 (1.29, 1.42)

1.03 (0.99, 1.08)

0.93 (0.89, 0.96)

0.97 (0.88, 1.07)

Esophageal atresia/tracheoesophageal fistula

1.08 (0.99, 1.18)

1.06 (0.97, 1.16)

1.04 (0.95, 1.14)

1.01 (0.92, 1.1)

1.11 (1.02, 1.21)

0.97 (0.89, 1.05)

Tetralogy of Fallot

1.1(1.03,1.17)

0.78 (0.73, 0.84)

1.03 (0.97, 1.1)

0.99 (0.93, 1.05)

0.96 (0.91, 1.02)

0.96 (0.91, 1.03)

Encephalocele 1.21 (.05, 1.39) 0.68 (0.58, 0.81) 1.08 (0.98, 1.18) 0.91 (0.83,1) 0.94 (0.86, 1.02) 0.96 (0.83, 1.1)
Congenital posterior urethral valves 1.11 (0.95, 1.29) 0.61 (0.52,0.71) 1.06 (0.92, 1.23) 0.84 (0.73,0.97) 1.33(1.15, 1.54) 0.95 (0.79, 1.14)
Interrupted aortic arch 1.27 (0.99, 1.62) 0.85 (0.65, 1.11) 1.38 (1.12, 1.69) 0.81(0.65,1) 1.04 (0.84, 1.27) 0.93(0.73, 1.19)

Dextro-transposition of great arteries (d-TGA)

1.19 (1.08, 1.33)

0.89 (0.79, 1)

0.96 (0.87, 1.07)

0.89 (0.8, 0.98)

0.75 (0.68, 0.82)

0.93(0.84, 1.03)

Congenital cataract

0.93 (0.83, 1.04)

0.91 (0.81, 1.02)

1.09 (0.97, 1.22)

0.97 (0.87, 1.08)

0.94 (0.86, 1.04)

0.9 (0.81, 1)

Bladder exstrophy

157 (1.19, 2.05)

0.92 (0.69, 1.24)

1.16 (0.86, 1.57)

0.86 (0.62, 1.18)

1.03(0.75, 1.4)

0.88 (0.67, 1.17)

Cleft palate alone

1.23 (1.16, 1.31)

1.01 (0.95, 1.08)

1.16 (1.09, 1.22)

0.97 (0.91, 1.02)

0.96 (0.91, 1.01)

0.88 (0.83, 0.93)

Pyloric stenosis 1.72 (1.63, 1.82) 0.35(0.32, 0.38) 1.9 (1.8,2.01) 0.66 (0.62,0.71) 0.89 (0.84, 0.95) 0.87 (0.75, 1.01)
Pulmonary valve atresia and stenosis 1 (0.95, 1.05) 0.71 (0.67, 0.75) 1.02 (0.97, 1.07) 0.87 (0.83,0.92) 0.88 (0.84, 0.92) 0.86 (0.82, 0.9)
Limb deficiencies (reduction defects) 1.09 (1, 1.19) 0.87 (0.79, 0.95) 1.07 (1, 1.15) 0.85(0.79,0.91) 0.77 (0.73,0.82) 0.85(0.77,0.94)

Hydrocephalus without spina bifida

1.34 (1.22, 1.47)

1.03(0.94, 1.14)

0.87 (0.8, 0.95)

0.97 (0.89, 1.06)

1.05 (0.97, 1.12)

0.84 (0.66, 1.06)

Amniotic Bands

0.95 (0.67, 1.33)

0.65 (0.49, 0.86)

1.49 (1.04, 2.13)

0.67 (0.44, 1.03)

0.84 (0.58, 1.23)

0.83 (0.47, 1.49)

Ebstein anomaly

1.13(0.97, 1.33)

0.71 (0.59, 0.85)

1.33(1.16, 1.53)

0.92 (0.8, 1.05)

0.88 (0.78, 1.01)

0.83(0.71, 0.97)

Choanal atresia

1.4 (1.23,1.58)

1.02 (0.9, 1.17)

0.83 (0.74, 0.93)

0.88 (0.78, 0.99)

0.78 (0.69, 0.87)

0.81 (0.72, 0.92)

Omphalocele

1.19 (1.07, 1.31)

0.79 (0.71, 0.87)

1.07 (1.01, 1.15)

0.85 (0.79, 0.91)

0.92 (0.87, 0.98)

0.81 (0.73, 0.89)

Common truncus (truncus arteriosus)

2.1 (1.8, 2.46)

0.58 (0.48,0.7)

1.02 (0.87, 1.2)

0.72 (0.61, 0.85)

0.73 (0.63, 0.84)

0.76 (0.65, 0.89)
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Reduction deformity, Lower limbs

1.22 (1.03, 1.45)

0.94 (0.78, 1.13)

1.04 (0.88, 1.24)

0.82 (0.69, 0.98)

0.84 (0.72, 0.98)

0.76 (0.47, 1.21)

Ventricular septal defect

1.19 (117, 1.22)

0.84 (0.82, 0.86)

0.85 (0.83, 0.87)

0.79 (0.77, 0.81)

0.74 (0.73, 0.76)

0.75 (0.73, 0.77)

Craniosynostosis

1.27 (1.14, 1.42)

0.61 (0.54, 0.69)

1.12 (1.01, 1.24)

0.98 (0.89, 1.08)

0.54 (0.5, 0.59)

0.75 (0.68, 0.83)

Hypospadias

1.59 (1.56, 1.62)

0.87 (0.85, 0.89)

0.98 (0.96, 1)

1(0.98,1.02)

0.74 (0.72, 0.75)

0.73 (0.71, 0.74)

Anophthalmia/microphthalmia

0.79 (0.69, 0.91)

1.03 (0.9, 1.18)

1.18 (1.08, 1.27)

1.17 (1.07, 1.27)

0.59 (0.55, 0.63)

0.72 (0.65, 0.81)

Turner syndrome

0.61 (053, 0.71)

1.14 (1.01, 1.3)

1.01 (0.95, 1.08)

1.11 (1.04, 1.19)

157 (1.47, 1.66)

0.72 (0.6, 0.87)

Microcephalus

1.32 (1.18, 1.46)

0.78 (0.7, 0.87)

1.1(0.98, 1.23)

0.91 (0.82, 1.02)

0.71 (0.65, 0.78)

0.68 (0.54, 0.85)

Holoprosencephaly 1.92 (1.71, 2.16) 0.56 (0.49, 0.65) 0.85 (0.8, 0.9) 0.39 (0.36, 0.41) 1.24 (1.17, 1.31) 0.65 (0.55, 0.75)
Epispadias 0.8 (0.62, 1.04) 1.22(0.92, 1.62) 0.69 (0.53, 0.91) 1.37 (1.04, 1.8) 1.31(1.03, 1.67) 0.64 (0.46, 0.89)
Renal agenesis/hypoplasia 1.25 (1.17, 1.34) 0.92 (0.86, 0.99) 0.95 (0.9, 1) 0.84 (0.8, 0.89) 0.54 (0.51, 0.57) 0.62 (0.58, 0.66)

Atrial septal defect

2.53 (2.49, 2.57)

0.56 (0.54, 0.57)

1.31 (1.29, 1.34)

0.71 (0.7, 0.73)

0.71(0.7,0.72)

0.52 (0.51, 0.53)

Reduction deformity, Upper limbs

0.9 (0.79, 1.03)

0.95 (0.83, 1.09)

1.02 (0.9, 1.16)

0.83 (0.73, 0.94)

0.7 (0.63, 0.79)

0.51 (0.38, 0.68)

Tricuspid valve atresia and stenosis

0.67 (0.59, 0.76)

0.91 (0.81, 1.03)

0.61 (0.56, 0.68)

1.17 (1.07, 1.29)

0.53 (0.49, 0.58)

0.45 (0.41, 0.5)

Aniridia

1.24 (0.65, 2.38)

0.34 (0.15, 0.78)

1.84 (1.29, 2.63)

1.72 (1.1, 2.6)

1.45 (0.94, 2.24)




Table 7.:

Attributable Fraction in the Exposed by Substance
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Congenital Anomaly

Cigarettes AFE

Binge Alcohol AFE

Analgesics AFE

Cocaine AFE

Cannabis AFE

Cannabidiol AFE

Obstructive genitourinary defect

-0.09 (-0.15, -0.03)

0.02 (-0.03, 0.07)

-0.11 (-0.17, -0.06)

0.15 (0.1, 0.19)

-0.16 (-0.22, -0.12)

0.48 (0.39, 0.56)

Cleft lip with and without cleft palate

0.05 (-0.02, 0.12)

-0.06 (-0.14, 0.02)

0.23 (0.17, 0.29)

0.02 (-0.06, 0.1)

-0.07 (-0.15, 0.01)

0.34 (0.07, 0.53)

Pulmonary valve atresia

0.05 (-0.09, 0.18)

-1.21 (-1.63, -0.86)

0.39 (0.32, 0.46)

-0.03 (-0.16, 0.09)

0.22 (0.12, 0.3)

0.26 (0.15, 0.35)

Cloacal exstrophy

0.65 (0.59, 0.7)

-0.18 (-0.36, -0.02)

0.38 (0.29, 0.45)

-0.6 (-0.84, -0.39)

0.79 (0.75, 0.83)

0.23 (0.11, 0.34)

Hirschsprung disease (congenital
megacolon)

0.11 (-0.06, 0.25)

-0.75 (-1.12, -0.44)

0.06 (-0.12, 0.21)

0.01(-0.2, 0.17)

0.31 (0.19, 0.42)

0.22 (-0.26, 0.52)

Congenital hip dislocation

-0.07 (-0.19, 0.04)

0.09 (-0.03, 0.19)

-0.05 (-0.18, 0.06)

0.46 (0.4, 0.52)

0.56 (0.52, 0.6)

0.22 (-0.15, 0.46)

Small intestinal atresia/stenosis

-0.16 (-0.29, -0.03)

-0.15 (-0.29, -0.03)

0.08 (-0.01, 0.16)

0.09 (0, 0.17)

0.18 (0.11, 0.25)

0.21 (0.12, 0.28)

Single ventricle

-0.2 (-0.51, 0.05)

117 (-1.77,0.7)

0.06 (-0.08, 0.19)

-0.24 (-0.43, -0.07)

0.18 (0.05, 0.28)

0.18 (0, 0.33)

Deletion 22q11.2

-0.69 (-1.2, -0.3)

0.2 (-0.02, 0.38)

0.66 (0.58, 0.72)

0.45 (0.31, 0.56)

0.26 (0.09, 0.41)

0.18 (-0.11, 0.39)

Biliary atresia

0.02 (-0.15, 0.17)

-0.6 (-0.96, -0.31)

-0.13 (-0.34, 0.05)

0.1 (-0.06, 0.24)

0.16 (0.02, 0.28)

0.17 (0.02, 0.29)

Double outlet right ventricle

0.03 (-0.09, 0.15)

-0.46 (-0.67, -0.27)

0.1(0.01, 0.19)

-0.1(-0.21, 0.01)

0.16 (0.07, 0.24)

0.13 (0.01, 0.25)

Trisomy 13

-0.62 (-0.87, -0.41)

-0.04 (-0.18, 0.09)

-0.16 (-0.23, -0.11)

0.43 (0.4, 0.46)

0.22 (0.18, 0.26)

0.12 (0, 0.22)

Total anomalous pulmonary venous
connection

-0.6 (-0.91, -0.34)

-0.62 (-0.98, -0.33)

0.3(0.19, 0.4)

0.24 (0.11, 0.34)

0.05 (-0.08, 0.16)

0.11 (-0.01, 0.23)

Clubfoot

0.02 (-0.04, 0.07)

-0.14 (-0.2, -0.08)

0.03 (-0.03, 0.09)

-0.01 (-0.07, 0.05)

0.07 (0.01, 0.12)

0.09 (0.03, 0.15)

Diaphragmatic hernia

0.18 (0.12, 0.25)

-0.21 (-0.32, -0.1)

0.13(0.05,0.2)

-0.15 (-0.26, -0.06)

0.2 (0.13, 0.26)

0.08 (0, 0.15)

Patent ductus arteriosus

-0.05 (-0.09, 0)

-0.39 (-0.45, -0.33)

0.1 (0.07, 0.15)

-0.27 (-0.33, -0.21)

-0.72 (-0.79, -0.65)

0.07 (-0.12, 0.23)

Trisomy 21 (Down syndrome)

-0.2 (-0.25, -0.15)

0.03 (-0.01, 0.07)

0.02 (-0.01, 0.04)

0.12 (0.1, 0.14)

0.12(0.11, 0.14)

0.05 (0.02, 0.09)

Atrioventricular septal defect

-0.06 (-0.13, 0.01)

-0.27 (-0.36, -0.18)

0.06 (0.01, 0.12)

-0.08 (-0.15, -0.02)

0.05 (0, 0.1)

0.05 (-0.01, 0.11)

Trisomy 18

-0.52 (-0.67, -0.38)

-0.12 (-0.22, -0.02)

0.05 (0.02, 0.09)

0.25 (0.23, 0.28)

0.24 (0.21, 0.26)

0.04 (-0.04, 0.12)

Cleft lip alone

0.06 (-0.04, 0.15)

0.04 (-0.07, 0.13)

0.15 (0.07, 0.22)

-0.23 (-0.33, -0.13)

-0.03 (-0.12, 0.04)

0.03 (-0.08, 0.12)
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Hypoplastic left heart syndrome

0.17 (0.09, 0.23)

-0.46 (-0.61, -0.32)

0.1(0.04, 0.16)

-0.1(-0.18, -0.03)

0.09 (0.03, 0.15)

0.03 (-0.06, 0.1)

Aortic valve stenosis

-0.04 (-0.16, 0.06)

-0.4 (-0.57, -0.25)

0.37 (0.32, 0.42)

0.03 (-0.04, 0.1)

-0.12 (-0.19, -0.04)

0.02 (-0.07, 0.11)

Transposition of great arteries

0.2 (0.14, 0.26)

-0.25 (-0.36, -0.14)

0.18 (0.12, 0.24)

0.18 (-0.27, -0.09)

0.01 (-0.06, 0.08)

0.01 (-0.06, 0.08)

Anotia/microtia

173 (2.1, -1.4)

-0.15 (-0.29, -0.03)

0.28 (0.23, 0.32)

0.38 (0.35, 0.42)

0 (-0.04, 0.04)

0.01 (-0.09, 0.09)

Rectal and large intestinal 0.17 (0.11, 0.22) -0.19 (-0.28, -0.11) 0.07 (0,0.14) -0.15 (-0.24, -0.07) -0.11 (-0.18, -0.04) 0 (-0.06, 0.07)
atresia/stenosis

Spina bifida without anencephalus 0.04 (-0.03, 0.1) -0.2 (-0.3,-0.11) 0.27 (0.23,0.3) 0 (-0.05, 0.04) 0.05 (0.01, 0.08) 0(-0.07,0.07)
Gastroschisis 0 (-0.07, 0.06) -0.13 (-0.21, -0.05) 0.32 (0.28, 0.36) -0.03 (-0.1, 0.03) -0.08 (-0.14, -0.02) 0 (-0.07, 0.06)

Cleft lip with cleft palate

0.12 (0.06, 0.18)

-0.16 (-0.26, -0.07)

0.27 (0.22,0.32)

0.08 (-0.15, -0.01)

-0.05 (-0.11, 0.02)

-0.01 (-0.08, 0.06)

Coarctation of the aorta

0.14 (0.09, 0.19)

-0.42 (-0.52, -0.33)

0.14 (0.09, 0.18)

0.15 (-0.21, -0.09)

0.28 (0.24, 0.31)

-0.02 (-0.08, 0.04)

Anencephalus

-0.12 (-0.24, -0.01)

-0.43 (-0.59, -0.28)

0.26 (0.23, 0.3)

0.03 (-0.01, 0.08)

-0.08 (-0.12, -0.04)

-0.03 (-0.14, 0.06)

Esophageal atresia/tracheoesophageal
fistula

0.07 (-0.01, 0.15)

0.06 (-0.03, 0.14)

0.04 (-0.05, 0.12)

0.01 (-0.09, 0.09)

0.1(0.02, 0.17)

-0.03 (-0.12, 0.05)

Tetralogy of Fallot

0.09 (0.03, 0.15)

-0.28 (-0.38, -0.19)

0.03 (-0.03, 0.09)

-0.01 (-0.08, 0.05)

-0.04 (-0.1, 0.02)

-0.04 (-0.1, 0.03)

Encephalocele 0.17 (0.05, 0.28) -0.46 (-0.72, -0.24) 0.07 (-0.02, 0.15) -0.1(-0.2, 0) -0.07 (-0.16, 0.02) -0.04 (-0.2, 0.09)
Congenital posterior urethral valves 0.1 (-0.06, 0.23) -0.65 (-0.93, -0.42) 0.06 (-0.08, 0.18) -0.19 (-0.38, -0.03) 0.25(0.13,0.35) -0.05 (-0.27, 0.12)
Interrupted aortic arch 0.21 (-0.01, 0.38) -0.17 (-0.54,0.1) 0.27 (0.11, 0.41) -0.24 (-0.53, 0) 0.04 (-0.18, 0.21) -0.07 (-0.37, 0.16)

Dextro-transposition of great arteries
(d-TGA)

0.16 (0.07, 0.25)

-0.13 (-0.27, 0)

-0.04 (-0.15, 0.06)

0.13 (-0.25, -0.02)

-0.34 (-0.46, -0.22)

-0.07 (-0.18, 0.03)

Congenital cataract

-0.07 (-0.2, 0.04)

-0.1 (-0.24, 0.02)

0.08 (-0.03, 0.18)

-0.03 (-0.15, 0.08)

-0.06 (-0.17, 0.04)

-0.12 (-0.24, 0)

Bladder exstrophy

0.36 (0.16, 0.51)

-0.08 (-0.45, 0.19)

0.14 (-0.16, 0.36)

-0.17 (-0.61, 0.15)

0.03 (-0.33, 0.29)

-0.13 (0.5, 0.15)

Cleft palate alone

0.19 (0.14, 0.23)

0.01 (-0.05, 0.07)

0.13 (0.08, 0.18)

-0.04 (-0.1, 0.02)

-0.05 (-0.1, 0.01)

0.14 (-0.21, -0.08)

Pyloric stenosis

0.42 (0.39, 0.45)

-1.85 (-2.08, -1.63)

0.47 (0.44, 0.5)

-0.5 (-0.61, -0.4)

-0.12 (-0.19, -0.05)

-0.15 (-0.32, 0.01)

Pulmonary valve atresia and stenosis

0 (-0.05, 0.05)

-0.4 (-0.48, -0.33)

0.02 (-0.03, 0.06)

-0.14 (-0.2, -0.09)

-0.14 (-0.19, -0.09)

-0.17 (-0.22, -0.12)

Limb deficiencies (reduction defects)

0.09 (0, 0.16)

-0.15 (-0.26, -0.05)

0.07 (0, 0.13)

-0.18 (-0.26, -0.1)

-0.29 (-0.37, -0.22)

-0.18 (-0.29, -0.07)

Hydrocephalus without spina bifida

0.25(0.18, 0.32)

0.03 (-0.06, 0.12)

-0.15 (-0.25, -0.06)

-0.03 (-0.12, 0.05)

0.04 (-0.03, 0.11)

-0.2 (-0.52, 0.06)

Amniotic Bands

-0.06 (-0.49, 0.25)

-0.53 (-1.03, -0.16)

0.33(0.04, 0.53)

-0.49 (-1.28, 0.03)

-0.19 (-0.73, 0.19)

-0.2 (-1.14, 0.33)

Ebstein anomaly

0.12 (-0.03, 0.25)

-0.41 (-0.69, -0.18)

0.25 (0.14, 0.35)

-0.09 (-0.25, 0.05)

-0.13 (-0.29, 0.01)

-0.2 (-0.4, -0.03)

Choanal atresia

0.28 (0.19, 0.37)

0.02 (-0.11, 0.15)

-0.2 (-0.35, -0.07)

0.14 (-0.28, -0.01)

-0.29 (-0.45, -0.15)

-0.23 (-0.39, -0.09)

Omphalocele

0.16 (0.07, 0.24)

-0.27 (-0.41, -0.14)

0.07 (0.01, 0.13)

-0.18 (-0.26, -0.1)

-0.09 (-0.15, -0.02)

-0.24 (-0.37, -0.12)
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Common truncus (truncus arteriosus)

0.52 (0.44, 0.59)

-0.73 (-1.1, -0.43)

0.02 (-0.15, 0.16)

-0.39 (-0.64, -0.18)

-0.37 (-0.59, -0.18)

-0.32 (-0.54, -0.12)

Reduction deformity, Lower limbs

0.18 (0.03, 0.31)

-0.07 (-0.28, 0.12)

0.04 (-0.14, 0.19)

-0.22 (-0.46, -0.02)

-0.2 (0.4, -0.02)

-0.32 (-1.12, 0.17)

Ventricular septal defect

0.16 (0.14, 0.18)

-0.19 (-0.22, -0.16)

-0.18 (-0.2, -0.15)

-0.26 (-0.29, -0.23)

-0.34 (-0.37, -0.31)

-0.33 (-0.36, -0.3)

Craniosynostosis

0.21 (0.12, 0.29)

-0.64 (-0.84, -0.46)

0.11 (0.01, 0.19)

-0.02 (-0.13, 0.08)

-0.84 (-1.01, -0.69)

-0.34 (-0.48, -0.21)

Hypospadias

0.37 (0.36, 0.38)

-0.15 (-0.17, -0.13)

-0.02 (-0.04, 0)

0 (-0.02, 0.02)

-0.35 (-0.38, -0.33)

-0.37 (-0.4, -0.35)

Anophthalmia/microphthalmia

-0.26 (-0.44, -0.1)

0.03 (-0.11, 0.15)

0.15 (0.08, 0.22)

0.14 (0.07, 0.21)

-0.71 (-0.83, -0.59)

-0.38 (-0.55, -0.23)

Turner syndrome

-0.63 (-0.89, -0.41)

0.13 (0.01, 0.23)

0.01 (-0.05, 0.07)

0.1 (0.04, 0.16)

0.36 (0.32, 0.4)

-0.39 (-0.68, -0.15)

Microcephalus

0.24 (0.16, 0.32)

-0.28 (-0.42, -0.15)

0.09 (-0.02, 0.18)

-0.09 (-0.22, 0.02)

-0.41 (-0.54, -0.28)

-0.47 (-0.84, -0.17)

Holoprosencephaly

0.48 (0.41, 0.54)

-0.78 (-1.05, -0.54)

-0.18 (-0.25, -0.11)

-1.58 (-1.74, -1.43)

0.19 (0.14, 0.24)

-0.55 (-0.8, -0.33)

Epispadias

-0.24 (-0.6, 0.03)

0.18 (-0.08, 0.38)

-0.44 (-0.9, -0.1)

0.27 (0.04, 0.44)

0.24 (0.03, 0.4)

-0.56 (-1.18, -0.12)

Renal agenesis/hypoplasia

0.2 (0.15, 0.25)

-0.08 (-0.16, -0.01)

-0.05 (-0.11, 0)

-0.18 (-0.25, -0.12)

-0.86 (-0.97, -0.76)

-0.62 (-0.73, -0.52)

Atrial septal defect

0.6 (0.6, 0.61)

-0.79 (-0.83, -0.76)

0.24 (0.22, 0.25)

-0.4 (-0.43,-0.37)

-0.4 (-0.43,-0.38)

-0.91 (-0.94, -0.88)

Reduction deformity, Upper limbs

-0.11 (-0.27, 0.03)

-0.05 (-0.21, 0.08)

0.02 (-0.11, 0.14)

-0.2 (-0.36, -0.06)

-0.43 (-0.6, -0.27)

-0.97 (-1.61, -0.48)

Tricuspid valve atresia and stenosis

-0.49 (-0.7, -0.31)

-0.1 (-0.24, 0.03)

-0.63 (-0.8, -0.48)

0.15 (0.07, 0.22)

-0.88 (-1.06, -0.72)

-1.21 (-1.46, -0.99)

Aniridia

0.2 (-0.53, 0.58)

-1.92 (-5.62, -0.28)

0.46 (0.23, 0.62)

0.42 (0.12, 0.61)

0.31 (-0.07, 0.55)
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Congenital Anomaly

Cigarettes PAR

Binge Alcohol
PAR

Analgesics PAR

Cocaine PAR

Cannabis PAR

Cannabidiol PAR

Obstructive genitourinary defect

-0.03 (-0.05, -0.01)

0.01 (-0.02, 0.03)

-0.03 (-0.05, -0.02)

0.07 (0.05, 0.09)

-0.04 (-0.06, -0.03)

0.47 (0.38, 0.55)

Cleft lip with and without cleft palate

0.02 (-0.01, 0.04)

-0.02 (-0.05, 0.01)

0.09 (0.06, 0.12)

0.01 (-0.03, 0.05)

-0.02 (-0.04, 0)

0.34 (0.07, 0.53)

Hirschsprung disease (congenital

megacolon)

0.05 (-0.02, 0.11)

-0.24 (-0.32, -0.16)

0.02 (-0.04, 0.08)

0 (-0.09, 0.09)

0.12 (0.06, 0.17)

0.22 (-0.25, 0.51)

Congenital hip dislocation

-0.03 (-0.08, 0.02)

0.05 (-0.02, 0.11)

-0.02 (-0.05, 0.02)

0.28 (0.23, 0.33)

0.25 (0.22, 0.28)

0.21 (-0.14, 0.46)

Pulmonary valve atresia

0.01 (-0.02, 0.05)

-0.27 (-0.32, -0.22)

0.18 (0.14, 0.23)

-0.02 (-0.09, 0.05)

0.11 (0.06, 0.16)

0.12 (0.06, 0.17)

Biliary atresia

0.01 (-0.04, 0.05)

-0.16 (-0.22, -0.1)

-0.04 (-0.1, 0.01)

0.06 (-0.04, 0.14)

0.07 (0.01, 0.13)

0.1(0.01, 0.18)

Patent ductus arteriosus

-0.02 (-0.04, 0)

-0.16 (-0.18, -0.13)

0.04 (0.02, 0.05)

-0.12 (-0.14, -0.09)

-0.16 (-0.17, -0.15)

0.07 (-0.12, 0.23)

Trisomy 13

-0.11 (-0.13, -0.08)

-0.01 (-0.06, 0.03)

-0.06 (-0.08, -0.04)

0.3 (0.27, 0.32)

0.11 (0.09, 0.12)

0.07 (0, 0.13)

Small intestinal atresia/stenosis

-0.02 (-0.04, -0.01)

-0.05 (-0.08, -0.01)

0.03 (0, 0.06)

0.06 (0, 0.11)

0.1 (0.06, 0.14)

0.06 (0.03, 0.09)

Cloacal exstrophy

0.27 (0.22,0.31)

-0.05 (-0.09, -0.01)

0.1(0.07, 0.14)

-0.23 (-0.29, -0.16)

0.57 (0.51, 0.62)

0.06 (0.02,0.1)

Single ventricle

-0.03 (-0.06, 0.01)

-0.25 (-0.31, -0.18)

0.02 (-0.03, 0.07)

-0.13 (-0.22, -0.04)

0.09 (0.02, 0.16)

0.06 (0, 0.11)

Total anomalous pulmonary venous

-0.08 (0.1, -0.05)

-0.17 (-0.23, -0.11)

0.13 (0.08, 0.19)

0.15 (0.07, 0.23)

0.02 (-0.04, 0.08)

0.05 (-0.01, 0.11)

Eﬁggﬁfﬂqaﬁc hernia 0.05 (0.03, 0.08) -0.06 (-0.1, -0.03) 0.05(0.02,0.08) |  -0.08 (-0.13, -0.03) 0.09 (0.06, 0.12) 0.04 (0, 0.08)
Double outlet right ventricle 0.01 (-0.02, 0.04) -0.15 (0.2, -0.1) 0.04 (0, 0.07) -0.05 (-0.11, 0) 0.09 (0.04, 0.14) 0.04 (0, 0.07)
Deletion 22¢11.2 -0.11 (-0.16, -0.06) 0.09 (-0.01, 0.19) 0.4 (0.33, 0.47) 0.31(0.2,0.4) 0.09 (0.02, 0.16) 0.03 (-0.02, 0.09)
Trisomy 21 (Down syndrome) -0.04 (-0.05, -0.03) 0.01 (0, 0.03) 0.01 (0, 0.01) 0.07 (0.06, 0.08) 0.06 (0.05, 0.07) 0.03 (0.01, 0.05)
Atrioventricular septal defect -0.01(-0.03,0) | -0.08 (-0.11, -0.06) 0.02 (0,0.04) | -0.04 (-0.07, -0.01) 0.02 (0, 0.04) 0.03 (0, 0.06)
Trisomy 18 -0.09 (-0.11, -0.07) | -0.04 (-0.07, -0.01) 0.02 (0.01, 0.04) 0.16 (0.14, 0.18) 0.11 (0.1, 0.13) 0.02 (-0.02, 0.07)
Clubfoot 0.01(-0.01,0.02) | -0.05 (-0.06, -0.03) 0.01 (-0.01, 0.02) 0(-0.03,0.02) 0.02 (0, 0.04) 0.02 (0, 0.03)

Hypoplastic left heart syndrome

0.05 (0.02, 0.07)

-0.13 (-0.16, -0.1)

0.04 (0.02, 0.07)

-0.05 (-0.09, -0.01)

0.04 (0.01, 0.07)

0.01 (-0.03, 0.06)

Aortic valve stenosis

-0.01 (-0.04, 0.01)

-0.12 (-0.15, -0.08)

0.18 (0.15, 0.2)

0.02 (-0.02, 0.06)

-0.04 (-0.07, -0.02)

0.01 (-0.04, 0.06)
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Cleft lip alone 0.01 (-0.01, 0.03) 0.01 (-0.02, 0.05) 0.06 (0.03, 0.1) -0.12 (-0.17, -0.07) -0.02 (-0.05, 0.02) 0.01 (-0.02, 0.03)
Transposition of great arteries 0.08 (0.05, 0.11) -0.08 (-0.11, -0.05) 0.07 (0.05,0.1) -0.08 (-0.12, -0.05) 0 (-0.02, 0.03) 0.01 (-0.03, 0.04)
Anotia/microtia -0.19 (-0.2, -0.17) -0.05 (-0.09, -0.01) 0.12 (0.1,0.14) 0.25 (0.22,0.28) 0 (-0.02, 0.02) 0 (-0.05, 0.05)
Rectal and large intestinal atresia/stenosis 0.05 (0.03, 0.07) -0.06 (-0.09, -0.04) 0.02 (0, 0.05) -0.07 (-0.11, -0.04) -0.04 (-0.07, -0.02) 0 (-0.03, 0.03)
Spina bifida without anencephalus 0.01 (-0.01, 0.03) -0.06 (-0.09, -0.04) 0.12 (0.1,0.14) 0 (-0.02, 0.02) 0.02 (0, 0.04) 0 (-0.04, 0.04)
Gastroschisis 0 (-0.02, 0.02) -0.04 (-0.06, -0.02) 0.15 (0.12, 0.17) -0.02 (-0.05, 0.02) -0.03 (-0.05, -0.01) 0 (-0.04, 0.03)
Cleft lip with cleft palate 0.03 (0.01, 0.04) -0.06 (-0.09, -0.03) 0.12 (0.1, 0.15) -0.04 (-0.08, 0) -0.02 (-0.05, 0.01) 0 (-0.03, 0.02)

Congenital posterior urethral valves

0.03 (-0.02, 0.07)

-0.17 (-0.21, -0.12)

0.02 (-0.03, 0.06)

-0.09 (-0.17, -0.02)

0.09 (0.04, 0.13)

-0.01 (-0.04, 0.02)

Coarctation of the aorta

0.04 (0.02, 0.05)

-0.12 (-0.14, -0.1)

0.05 (0.03, 0.07)

0.08 (-0.11, -0.05)

0.14 (0.12, 0.15)

-0.01 (-0.04, 0.02)

Anencephalus

-0.03 (-0.05, 0)

-0.12 (-0.16, -0.09)

0.12 (0.1, 0.14)

0.02 (-0.01, 0.04)

0.03 (-0.05, -0.02)

-0.02 (-0.07, 0.03)

Esophageal atresia/tracheoesophageal
fistula

0.02 (0, 0.04)

0.02 (-0.01, 0.06)

0.01 (-0.02, 0.05)

0 (-0.05, 0.05)

0.04 (0.01, 0.08)

-0.02 (-0.06, 0.03)

Interrupted aortic arch

0.04 (-0.01, 0.09)

-0.05 (-0.13, 0.03)

0.12 (0.04, 0.19)

0.13 (-0.28, -0.01)

0.02 (-0.09, 0.11)

-0.02 (-0.09, 0.04)

Tetralogy of Fallot

0.02 (0.01, 0.04)

-0.09 (-0.11, -0.06)

0.01 (-0.01, 0.04)

-0.01 (-0.04, 0.03)

-0.02 (-0.04, 0.01)

-0.02 (-0.06, 0.01)

Encephalocele

0.05 (0.01, 0.09)

-0.13 (-0.18, -0.08)

0.03 (-0.01, 0.06)

-0.05 (-0.1, 0)

-0.03 (-0.06, 0.01)

-0.02 (-0.1, 0.05)

Dextro-transposition of great arteries (d-
TGA)

0.04 (0.02, 0.07)

-0.04 (-0.08, 0)

-0.01 (-0.05, 0.02)

0.07 (-0.14, -0.01)

0.13 (-0.17, -0.09)

-0.03 (-0.08, 0.01)

Limb deficiencies (reduction defects)

0.02 (0, 0.04)

-0.05 (-0.08, -0.02)

0.03 (0, 0.05)

-0.1 (-0.14, -0.06)

-0.13 (-0.15, -0.1)

0.04 (-0.06, -0.02)

Turner syndrome

-0.12 (-0.15, -0.09)

0.05 (0, 0.09)

0 (-0.02, 0.02)

0.06 (0.02,0.1)

0.12 (0.1, 0.14)

0.05 (-0.08, -0.03)

Congenital cataract

-0.02 (-0.04, 0.01)

-0.03 (-0.08, 0.01)

0.03 (-0.01, 0.07)

-0.02 (-0.08, 0.04)

-0.02 (-0.06, 0.02)

-0.06 (-0.12, 0)

Cleft palate alone

0.05 (0.03, 0.06)

0.01 (-0.02, 0.03)

0.05 (0.03, 0.08)

-0.02 (-0.05, 0.01)

-0.02 (-0.04, 0)

-0.07 (-0.1, -0.04)

Bladder exstrophy

0.13 (0.04, 0.21)

-0.03 (-0.13, 0.07)

0.05 (-0.05, 0.14)

-0.07 (-0.23, 0.06)

0.01 (-0.1, 0.11)

-0.07 (-0.24, 0.08)

Craniosynostosis

0.03 (0.01, 0.04)

-0.15 (-0.18, -0.12)

0.04 (0, 0.07)

-0.01 (-0.08, 0.05)

0.25 (-0.28, -0.22)

-0.07 (-0.1, -0.05)

Pulmonary valve atresia and stenosis

0 (-0.01, 0.01)

-0.11 (-0.13, -0.1)

0.01 (-0.01, 0.02)

0.06 (-0.09, -0.04)

0.04 (-0.06, -0.03)

0.08 (-0.11, -0.06)

Holoprosencephaly

0.15 (0.12, 0.18)

-0.18 (-0.22, -0.14)

-0.06 (-0.08, -0.04)

0.61 (-0.65, -0.57)

0.1(0.07, 0.13)

-0.1(-0.13, -0.07)

Ebstein anomaly

0.03 (-0.01, 0.07)

-0.12 (-0.17, -0.06)

0.11 (0.05, 0.16)

-0.05 (-0.12, 0.03)

-0.05 (-0.1, 0)

-0.1(-0.19, -0.02)

Choanal atresia

0.09 (0.05, 0.13)

0.01 (-0.04, 0.06)

-0.07 (-0.11, -0.03)

0.07 (-0.14, -0.01)

-0.1 (-0.15, -0.06)

0.11 (-0.18, -0.05)

Omphalocele

0.04 (0.02, 0.07)

-0.08 (-0.12, -0.05)

0.03 (0, 0.05)

0.09 (-0.13, -0.06)

-0.04 (-0.06, -0.01)

0.12 (-0.17, -0.06)

Ventricular septal defect

0.06 (0.05, 0.06)

-0.06 (-0.07, -0.06)

-0.05 (-0.06, -0.04)

-0.11 (-0.12, -0.1)

-0.08 (-0.09, -0.07)

0.13 (-0.14, -0.12)

Pyloric stenosis

0.24 (0.21, 0.26)

-0.39 (-0.41, -0.36)

0.2 (0.19, 0.22)

-0.16 (-0.19, -0.14)

-0.03 (-0.04, -0.01)

-0.14 (-0.31, 0.01)
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Common truncus (truncus arteriosus)

0.22 (0.17, 0.27)

-0.18 (-0.24, -0.13)

0.01 (-0.05, 0.06)

-0.18 (-0.28, -0.1)

-0.13 (-0.18, -0.07)

-0.14 (-0.23, -0.06)

Hypospadias

0.12 (0.11, 0.12)

-0.05 (-0.05, -0.04)

-0.01 (-0.01, 0)

0 (-0.01, 0.01)

-0.13 (-0.13, -0.12)

-0.18 (-0.19, -0.17)

Anophthalmia/microphthalmia

-0.05 (-0.09, -0.02)

0.01 (-0.04, 0.06)

0.06 (0.03, 0.09)

0.08 (0.04, 0.13)

-0.21 (-0.23, -0.18)

-0.18 (-0.24, 0.12)

Hydrocephalus without spina bifida

0.09 (0.06, 0.12)

0.01 (-0.02, 0.05)

-0.04 (-0.06, -0.02)

-0.01 (-0.05, 0.02)

0.01 (-0.01, 0.04)

-0.19 (-0.5, 0.06)

Amniotic Bands -0.01(-0.05,0.04) | -0.14 (-0.22, -0.06) 0.1(0,02) | -0.11(-0.22, -0.01) -0.03 (-0.1, 0.03) -0.19 (-1.07, 0.31)
Renal agenesis/hypoplasia 0.06 (0.04, 0.08) -0.03 (-0.05, 0) -0.02(-0.03,0) | -0.09 (-0.12, -0.06) |  -0.23 (-0.25, -0.22) -0.26 (-0.29, -0.23)
Reduction deformity, Lower limbs 0.06 (0, 0.11) -0.02 (-0.09, 0.04) 0.01 (-0.05, 0.07) -0.1(-0.19, -0.01) -0.05 (-0.1, -0.01) -0.31 (-1.07, 0.17)
Atrial septal defect 0.28 (0.27, 0.28) 0.2 (-0.21, -0.2) 0.09 (0.09,0.1) | -0.17(-0.18,-0.16) |  -0.13 (-0.14, -0.13) -0.34 (-0.35, -0.33)

Tricuspid valve atresia and stenosis

-0.09 (-0.12, -0.07)

-0.03 (-0.08, 0.01)

-0.16 (-0.18, -0.13)

0.09 (0.04, 0.13)

-0.23 (-0.26, -0.21)

-0.42 (-0.47, -0.37)

Microcephalus

0.11 (0.07, 0.16)

-0.11 (-0.16, -0.06)

0.03 (-0.01, 0.06)

-0.04 (-0.09, 0.01)

-0.09 (-0.12, -0.07)

-0.44 (-0.78, -0.17)

Epispadias

-0.09 (-0.2, 0.01)

0.09 (-0.04, 0.2)

-0.1(-0.17, -0.03)

0.13 (0.01, 0.24)

0.07 (0, 0.14)

-0.48 (-0.96, -0.11)

Reduction deformity, Upper limbs

-0.03 (-0.07, 0.01)

-0.02 (-0.07, 0.03)

0.01 (-0.04, 0.05)

-0.09 (-0.15, -0.03)

-0.1 (-0.13, -0.07)

-0.92 (-1.52, -0.46)

Aniridia

0.09 (-0.22, 0.32)

-0.35 (-0.57, -0.16)

0.21 (0.07, 0.33)

0.25 (0.04, 0.42)

0.11 (-0.04, 0.24)




Table 9.: Significance Levels by Substance
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Congenital Anomaly Cigarettes P- Binge Alcohol Analgesics  P- Cocaine P- Cannabis  P- Cannabidiol  P-
Value P-Value Value Value Value Value
Atrial septal defect 2.2e-320 0.0215 9.26E-39 0.00536446 1.09E-08 2.2e-320
Ventricular septal defect 7.36E-08 0.1490 1.24E-20 1.93E-04 0.0033 2.2e-320
Hypospadias 2.2e-320 0.4362 0.0317 0.7536 1.38E-05 1.02E-289
Tricuspid valve atresia and stenosis 7.29E-10 0.1377 4.01E-159 6.31E-04 3.93E-04 1.36E-50
Renal agenesis/hypoplasia 5.30E-11 0.0215 0.0606 2.82E-09 0.0028 1.63E-50
Obstructive genitourinary defect 0.0012 0.4876 4.12E-05 2.37E-09 3.92E-12 2.22E-15
Pulmonary valve atresia and stenosis 0.9716 0.0408 0.4950 3.64E-08 1.27E-08 9.14E-12
Anophthalmia/microphthalmia 8.86E-04 0.6781 7.92E-05 3.62E-04 1.48E-12 2.12E-08
Craniosynostosis 1.80E-05 1.0000 0.0266 0.7020 7.18E-05 2.31E-08
Holoprosencephaly 1.66E-28 2.00E-15 5.89E-08 2.02E-04 2.90E-12 2.34E-08
Reduction deformity, Upper limbs 0.1301 0.4407 0.7110 0.0042 1.15E-09 2.01E-06
Cleft palate alone 2.29E-11 0.6532 3.78E-07 0.2282 0.0892 3.47E-06
Small intestinal atresia/stenosis 0.0106 0.0125 0.0775 0.0531 4.47E-06 5.93E-06
Pulmonary valve atresia 0.4522 0.0978 2.23E-17 0.6602 2.62E-05 1.02E-05
Omphalocele 8.62E-04 6.56E-06 0.0288 7.27E-07 0.0056 2.49E-05
Cloacal exstrophy 1.36E-45 0.0284 1.91E-12 6.90E-11 2.13E-86 5.45E-04
Turner syndrome 9.14E-11 0.0367 0.7522 0.0014 7.69E-49 5.63E-04
Common truncus (truncus arteriosus) 7.03E-22 1.02E-08 0.8321 7.90E-05 2.51E-05 6.55E-04
Microcephalus 3.39E-07 7.86E-06 0.1067 0.1136 1.90E-13 7.11E-04
Choanal atresia 1.42E-07 0.7186 0.0014 0.0290 2.26E-05 7.34E-04
Limb deficiencies (reduction defects) 0.0428 0.0034 0.0405 1.72E-06 2.33E-06 8.14E-04
Trisomy 21 (Down syndrome) 1.75E-07 0.0895 0.1491 1.49E-55 4.02E-26 0.0021
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Clubfoot 0.4663 3.66E-06 0.2788 0.7378 0.0136 0.0048
Epispadias 0.0915 0.1591 0.0084 0.0242 0.0287 0.0081
Cleft lip with and without cleft palate 0.1248 0.1441 3.43E-11 0.5715 0.0887 0.0159
Ebstein anomaly 0.1232 1.57E-04 3.81E-05 0.2279 0.0643 0.0177
Biliary atresia 0.7657 4.48E-06 0.1548 0.2026 0.0244 0.0233
Diaphragmatic hernia 5.26E-07 5.72E-05 0.0011 0.0013 2.11E-08 0.0373
Double outlet right ventricle 0.5739 4.13E-08 0.0314 0.0743 7.31E-04 0.0379
Congenital cataract 0.2114 0.1134 0.1381 0.5892 0.2537 0.0416
Trisomy 13 1.77E-11 0.5945 4.20E-09 3.06E-106 3.50E-06 0.0427
Single ventricle 0.1289 2.42E-10 0.3626 0.0037 0.0060 0.0482
Pyloric stenosis 1.38E-84 0.1051 1.78E-122 9.40E-29 4.82E-04 0.0657
Total anomalous pulmonary venous connection 1.05E-07 1.64E-06 9.84E-07 3.78E-04 0.4381 0.0773
Atrioventricular septal defect 0.0937 6.48E-12 0.0269 0.0073 0.0470 0.0854
Hydrocephalus without spina bifida 1.84E-09 0.4705 0.0011 0.5085 0.2200 0.1441
Dextro-transposition of great arteries (d-TGA) 8.25E-04 0.0513 0.4822 0.0198 1.40E-10 0.1529
Deletion 22q11.2 6.98E-05 0.0672 3.67E-28 4.72E-08 0.0051 0.2047
Congenital hip dislocation 0.1991 0.1493 0.3536 1.13E-27 7.27E-70 0.2063
Reduction deformity, Lower limbs 0.0231 0.5017 0.6312 0.0277 0.0253 0.2401
Tetralogy of Fallot 0.0047 7.04E-11 0.2681 0.6597 0.1692 0.2530
Hirschsprung disease (congenital megacolon) 0.1818 1.55E-08 0.4987 0.9565 6.69E-06 0.3010
Trisomy 18 6.05E-04 0.0140 0.0034 2.43E-08 1.06E-61 0.3486
Bladder exstrophy 0.0011 0.5975 0.3200 0.3343 0.8681 0.3893
Patent ductus arteriosus 0.0375 0.8028 2.36E-07 1.22E-09 5.95E-39 0.4386
Esophageal atresia/tracheoesophageal fistula 0.0977 0.2148 0.3880 0.8914 0.0195 0.4602
Hypoplastic left heart syndrome 1.91E-05 1.35E-14 0.0014 0.0080 0.0048 0.5102
Anencephalus 0.0269 1.45E-10 4.05E-44 0.1442 7.15E-05 0.5233
Coarctation of the aorta 5.48E-07 0.8820 3.82E-08 1.56E-07 9.74E-45 0.5283
Amniotic Bands 0.7468 0.0026 0.0271 0.0681 0.3785 0.5349
Encephalocele 0.0079 4.74E-06 0.1125 0.0397 0.1289 0.5605
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Congenital posterior urethral valves 0.2039 8.57E-11 0.4012 0.0184 1.35E-04 0.5725
Interrupted aortic arch 0.0582 0.2411 0.0022 0.0472 0.7274 0.5788
Cleft lip alone 0.2215 0.4773 1.95E-04 1.40E-06 0.4216 0.5998
Aortic valve stenosis 0.4160 6.46E-09 9.78E-36 0.4210 0.0011 0.6318
Transposition of great arteries 1.49E-08 5.27E-07 4.54E-08 1.54E-05 0.7669 0.7385
Cleft lip with cleft palate 1.92E-04 2.58E-04 3.32E-04 0.0304 0.1508 0.7455
Anotia/microtia 9.45E-10 0.0148 4.05E-37 2.02E-64 0.9670 0.8853
Gastroschisis 0.9978 0.0014 9.74E-13 0.3662 0.0098 0.8919
Rectal and large intestinal atresia/stenosis 4.34E-08 2.94E-06 0.0493 1.69E-04 0.0011 0.8966
Spina bifida without anencephalus 0.2806 5.86E-06 2.14E-29 0.9854 0.0181 0.9332
Aniridia 0.5068 0.0073 6.17E-04 0.0096 0.0952 -




Table 10.: E-Values by Substance
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Congenital Anomaly Cigarettes E- Binge Alcohol Analgesics  E- Cocaine E- Cannabis E- Cannabidiol
Value E-Value Value Value Value E-Value

Obstructive genitourinary defect 1.00 1.46 2.64
Pulmonary valve atresia 1.00 2.28 1.53 1.64
Small intestinal atresia/stenosis 1.00 1.00 1.49 1.54
Cloacal exstrophy 4.32 2.16 7.61 1.48
Cleft lip with and without cleft palate 1.00 1.70 1.00 1.37
Clubfoot 1.00 1.00 1.14 1.20
Biliary atresia 1.00 1.00 1.17 1.18
Trisomy 21 (Down syndrome) 1.00 1.00 1.46 1.49 1.16
Double outlet right ventricle 1.00 1.11 1.36 1.10
Diaphragmatic hernia 1.52 1.31 1.57 1.07
Trisomy 13 2.73 1.75 1.07
Single ventricle 1.00 1.30 1.04
Transposition of great arteries 1.59 1.54 1.00 1.00
Rectal and large intestinal atresia/stenosis 1.50 1.01 1.00
Hypoplastic left heart syndrome 1.44 1.26 1.20 1.00
Cleft lip alone 1.00 1.00 1.38 1.00
Hirschsprung disease (congenital megacolon) 1.00 1.00 1.00 1.77 1.00
Spina bifida without anencephalus 1.00 1.93 1.00 1.10 1.00
Anotia/microtia 1.93 2.43 1.00 1.00
Aortic valve stenosis 2.32 1.00 1.00
Atrioventricular septal defect 1.10 1.03 1.00
Congenital hip dislocation 1.00 2.69 3.57 1.00
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Deletion 22q11.2 1.00 4.22 2.28 142 1.00
Patent ductus arteriosus 1.37 1.00
Total anomalous pulmonary venous connection 1.79 151 1.00 1.00
Trisomy 18 1.16 191 1.85 1.00
Atrial septal defect 4.38 1.89

Common truncus (truncus arteriosus) 2.99 1.00

Holoprosencephaly 2.80 1.60

Pyloric stenosis 2.64 3.00

Hypospadias 2.48

Choanal atresia 1.77 1.00

Hydrocephalus without spina bifida 1.73 1.00 1.00

Bladder exstrophy 1.67 1.00 1.00

Microcephalus 1.65 1.00

Renal agenesis/hypoplasia 1.62

Ventricular septal defect 1.61

Cleft palate alone 1.58 1.00 1.41

Craniosynostosis 1.53 1.13

Coarctation of the aorta 1.42 1.43 1.97

Dextro-transposition of great arteries (d-TGA) 1.36

Omphalocele 1.35 1.09

Cleft lip with cleft palate 1.33 1.88

Encephalocele 1.28 1.00

Tetralogy of Fallot 1.20 1.00

Reduction deformity, Lower limbs 1.20 1.00

Limb deficiencies (reduction defects) 1.06 1.06

Aniridia 1.00 1.90 1.53 1.00

Congenital posterior urethral valves 1.00 1.00 1.56

Ebstein anomaly 1.00 1.60

Esophageal atresia/tracheoesophageal fistula 1.00 1.00 1.00 1.00 1.15
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Interrupted aortic arch 1.00 1.49 1.00
Amniotic Bands 1.26

Anencephalus 191 1.00
Anophthalmia/microphthalmia 1.00 1.39 1.35

Congenital cataract 1.00

Epispadias 1.00 1.25 1.20
Gastroschisis 212

Pulmonary valve atresia and stenosis 1.00

Reduction deformity, Upper limbs 1.00

Tricuspid valve atresia and stenosis 1.35

Turner syndrome 1.10 1.00 1.25 2.31




Table 11.: Summary Single CAs with Significant Cannabinoid E-Values

Continuous Variables
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Defect No. System Term Estimat | Std.Erro | Student | P_Valu | S.D. E-Value- | E-Value-
e r sT e Point Lower
Estimate | Limit
Congenital hip dislocation 1 Limb CBD | 298.2937 55.1100 5.4127 0.0000 | 3.8459 | 9.00E+30 | 7.53E+19
Small intestinal atresia/stenosis 2 GIT CBD | 61.6605 12.7480 4.8369 0.0000 | 1.1814 | 8.48E+20 | 3.86E+12
Trisomy 21 (Down syndrome) 3 Chromosom | Cannabi | 221.1194 25.4625 8.6841 0.0000 | 10.2305 | 6.97E+08 | 8.30E+06
€S S
Biliary atresia 4 GIT CBD | 10.9598 2.9445 3.7222 0.0002 | 0.3922 | 2.22E+11 | 3.48E+05
Interrupted aortic arch 5 CVsS Cannabi | 15.4036 3.1814 4.8418 0.0000 | 0.8305 | 4.28E+07 | 4.68E+04
s
Obstructive genitourinary defect 6 GUT CBD | 486.0939 | 176.6878 2.7511 0.0072 | 13.0815 | 9.69E+14 | 3.51E+04
Hirschsprung disease (congenital 7 GIT CBD | 38.1800 14.1676 2.6949 0.0084 1.0029 | 2.22E+15 | 2.67E+04
megacolon)
Clubfoot 8 Limb Cannabi | 94.0309 21.7820 4.3169 0.0000 | 5.4311 | 1.39E+07 | 1.10E+04
s
Trisomy 13 9 Chromosom | Cannabi | 75.1394 14.1320 5.3170 0.0000 | 5.1679 | 1.11E+06 | 8.58E+03
€S S
Congenital posterior urethral valves 10 GUT Cannabi | 23.9399 6.0470 3.9590 0.0001 1.6001 | 1.64E+06 | 1.96E+03
s
Trisomy 18 11 Chromosom | Cannabi | 126.9696 26.3799 4.8131 0.0000 | 10.0424 | 1.99E+05 | 1.85E+03
€s S
Esophageal atresia/tracheoesophageal 12 GIT Cannabi 8.8449 1.8993 4.6570 0.0000 | 0.7176 | 1.49E+05 | 1.34E+03
fistula s
Hypospadias 13 GUT Cannabi | 277.1790 62.0518 4.4669 0.0000 | 23.4595 | 9.34E+04 842.36
s
Rectal and large intestinal atresia/stenosis 14 GIT CBD | 26.0458 8.9678 2.9044 0.0040 | 1.3051 | 1.54E+08 751.61
Diaphragmatic hernia 15 Body Wall CBD | 21.8501 7.9675 2.7424 0.0065 | 1.1678 | 4.96E+07 263.36
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Deletion 22g11.2 16 Chromosom | Cannabi 6.6430 2.1356 3.1106 0.0024 | 0.5153 | 2.49E+05 155.04
Turner syndrome 17 %hromosom Cannab§i 85.6995 27.3283 3.1359 0.0021 6.9321 | 1.54E+05 137.32
Epispadias 18 %ﬂ Cannab§i 12.5446 4.8274 2.5986 0.0111 0.7392 | 1.02E+07 90.57
Renal agenesis/hypoplasia 19 GUT Cannab§i 27.3954 8.0283 3.4124 0.0007 | 3.0315 | 7.45E+03 66.37
Anotia/microtia 20 Face Cannab§i 37.2830 10.9541 3.4036 0.0008 | 4.1220 | 7.51E+03 65.76
Cleft palate alone 21 Face Cannab§i 24.1946 7.4701 3.2389 0.0014 | 2.7271 | 6.42E+03 48.45
Encephalocele 22 CNS Cannab§i 11.3770 3.4999 3.2507 0.0013 | 1.3138 | 5.29E+03 45.63
Aortic valve stenosis 23 CVS Cannab§i 17.8815 5.6987 3.1378 0.0019 | 2.1020 | 4.60E+03 36.41
Ventricular septal defect 24 CVS Cannab§i 166.2143 53.4999 3.1068 0.0021 | 19.9528 | 3.92E+03 32.64
Pulmonary valve atresia 25 CVS Cannabsi 9.4232 3.2900 2.8642 0.0047 | 1.0048 | 1.02E+04 29.43
Omphalocele 26 Body Wall Cannab§i 28.8975 9.4470 3.0589 0.0025 3.5144 | 3.55E+03 29.18
Hypoplastic left heart syndrome 27 CVS Cannab§i 10.7890 3.7873 2.8487 0.0047 1.4621 | 1.65E+03 15.88
Limb deficiencies (reduction defects) 28 Limb Cannab§i 21.4215 8.5782 2.4972 0.0134 | 2.6156 | 3.45E+03 9.53
Bladder exstrophy 29 GUT Cannabéi 1.0618 0.4420 2.4021 0.0170 0.1593 | 8.61E+02 5.62
Tetralogy of Fallot 30 CVS Cannab§i 9.9067 4.1188 2.4052 0.0168 1.6031 | 5.53E+02 5.16
Total ar_lomalous pulmonary venous 31 CVS Cannab§i 3.9176 1.7901 2.1885 0.0299 | 0.4968 | 2.61E+03 3.71
connection S

Reduction deformity, Lower limbs 32 Limb Cannabi | 16.8233 8.1886 2.0545 0.0420 | 1.5723 | 3.39E+04 2.57
Coarctation of the aorta 33 CVS Cannab§i 22.5596 10.7794 2.0928 0.0372 | 4.0947 300.37 2.12
Atrial septal defect 34 CVS Cannab§i 285.3616 | 136.7781 2.0863 0.0378 | 51.3723 313.06 2.08

S




Spina bifida without anencephalus 35 CNS THC 2.8769 0.8458 3.4015 0.0008 | 4.0422 3.23 1.96
Choanal atresia 36 Face THC 0.4877 0.1646 2.9621 0.0033 | 0.7074 3.15 1.78
Anophthalmia/microphthalmia 37 CNS THC 1.1940 0.4167 2.8651 0.0045 | 1.7156 3.17 1.74
Transposition of great arteries 38 CVS CBD | 19.6282 9.8766 1.9873 0.0479 14902 | 3.21E+05 171
Holoprosencephaly 39 Face THC 8.0303 3.0912 2.5978 0.0104 | 10.1025 3.54 1.68
Congenital cataract 40 Face Cannabi 5.9492 2.9939 1.9871 0.0479 | 1.0436 357.58 1.39
)
Single ventricle 41 CvVs THC 0.6263 0.3014 2.0780 0.0394 | 0.9759 2.99 1.22
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PLEASE SEE MAIN TEXT FOR TABLE 12




Table 13.: Summary CAs with Significant Cannabinoid E-Values

Categorical Variables
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Defect No. System Term PR_C.I. AFE_C.I. ChiSqu | P- E- E-
Value | Value- | Value-
Point Lower
Estimat | Limit
e
Cloacal exstrophy 1 GIT Cannabis 4.85 (4.08, 0.79 (0.75, | 386.733 | 2.13E- 9.17 7.61
5.77) 0.83) 6 86
Congenital hip dislocation 2 Limb Cannabis 2.28 (2.08, 0.56 (0.52, | 310.817 | 7.27E- 3.99 3.57
2.51) 0.60) 0 70
Coarctation of the aorta 3 CVS Cannabis 1.38 (1.31, 0.28 (0.24, | 152.373 | 2.64E- 2.10 1.95
1.45) 0.31) 9 35
Obstructive genitourinary defect 4 GUT CBD 1.92 (1.63, 0.48 (0.39, | 62.8480 | 2.22E- 3.25 2.64
2.27) 0.56) 15
Turner syndrome 5 Chromosomes | Cannabis 1.54 (1.36, 0.35(0.26, | 46.5388 | 4.58E- 2.45 2.06
1.75) 0.43) 12
Trisomy 21 (Down syndrome) 6 Chromosomes | Cannabis 1.12 (1.08, 0.11(0.08, | 45.1282 | 9.42E- 1.49 1.39
1.16) 0.14) 12
Diaphragmatic hernia 7 Body Wall Cannabis 1.24 (1.15, 0.20 (0.13, | 31.3922 | 1.09E- 1.80 1.57
1.34) 0.26) 08
Trisomy 18 8 Chromosomes | Cannabis 1.22 (1.13, 0.18 (0.11, | 25.4031 | 2.41E- 1.73 1.51
1.32) 0.24) 07
Small intestinal atresia/stenosis 9 GIT Cannabis 1.22 (1.12, 0.18 (0.11, | 21.0508 | 2.33E- 1.75 1.49
1.33) 0.25) 06
Small intestinal atresia/stenosis 9 GIT CBD 1.26 (1.14, 0.21(0.12, | 20.5107 | 5.93E- 1.83 1.54
1.39) 0.28) 06
Hirschsprung disease (congenital 10 GIT Cannabis 1.46 (1.24, 0.31(0.19, | 20.2790 | 3.50E- 2.27 1.77
megacolon) 1.72) 0.42) 06
Pulmonary valve atresia 11 CVS CBD 1.35(1.18, 0.26 (0.15, | 19.4818 | 1.02E- 2.04 1.64
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1.55) 0.35) 05

Holoprosencephaly 12 Face Cannabis 1.27 (1.12, 0.21(0.11, | 14.9227 | 5.94E- 1.86 1.50
1.43) 0.30) 05

Pulmonary valve atresia 13 Cvs Cannabis 1.28 (1.13, 0.22 (0.11, | 14.7343 | 6.56E- 1.87 1.50
1.45) 0.31) 05

Congenital posterior urethral valves 14 GUT Cannabis 1.33(1.15, 0.25(0.13, | 14.5658 | 7.18E- 1.99 1.56
1.54) 0.35) 05

Cloacal exstrophy 15 GIT CBD 1.30 (1.12, 0.23(0.11, | 11.9548 | 5.45E- 1.92 1.48
1.51) 0.34) 04

Trisomy 13 16 Chromosomes | Cannabis 1.22 (1.09, 0.18 (0.08, | 11.7980 | 3.18E- 1.75 1.41
1.38) 0.27) 04

Trisomy 21 (Down syndrome) 17 Chromosomes | CBD 1.06 (1.02, 0.05 (0.02, 9.4889 | 0.0021 1.30 1.16
1.09) 0.09)

Double outlet right ventricle 18 CVsS Cannabis 1.21 (1.07, 0.17 (0.06, 9.2314 | 0.0013 1.70 1.34
1.36) 0.27)

Clubfoot 19 Limb CBD 1.10 (1.03, 0.09 (0.03, 7.9686 | 0.0048 1.43 1.20
1.18) 0.15)

Deletion 22911.2 20 Chromosomes | Cannabis 1.36 (1.09, 0.26 (0.09, 7.8339 | 0.0028 2.05 1.42
1.68) 0.41)

Clubfoot 21 Limb Cannabis 1.07 (1.01, 0.07 (0.01, 6.0907 | 0.0077 1.36 1.14
1.14) 0.12)

Cleft lip with and without cleft palate 22 Face CBD 1.52 (1.08, 0.34 (0.07, 5.8113 | 0.0159 241 1.37
2.14) 0.53)

Esophageal atresia/tracheoesophageal 23 GIT Cannabis 1.11 (1.02, 0.10 (0.02, 5.4545 | 0.0112 1.45 1.15

fistula 1.21) 0.17)

Single ventricle 24 CVS Cannabis 1.23 (1.03, 0.19 (0.03, 54301 | 0.0113 1.76 1.22
1.46) 0.32)

Biliary atresia 25 GIT CBD 1.20 (1.02, 0.17 (0.02, 5.1462 | 0.0233 1.69 1.18
1.40) 0.29)

Biliary atresia 25 GIT Cannabis 1.19 (1.02, 0.16 (0.02, 5.0640 | 0.0141 1.67 1.17
1.39) 0.28)

Hypoplastic left heart syndrome 26 CVS Cannabis 1.10(1.01, 0.09 (0.01, 4.8102 | 0.0164 1.42 1.11
1.19) 0.16)

Epispadias 27 GUT Cannabis 1.31(1.03, 0.24 (0.03, 4.7877 | 0.0166 1.95 1.20
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1.67) 0.40)

Diaphragmatic hernia 28 Body Wall CBD 1.09 (1.00, 0.08 (0.00, 4.3354 | 0.0373 1.39 1.07
1.17) 0.15)

Double outlet right ventricle 29 Cvs CBD 1.16 (1.01, 0.14 (0.01, 4.3080 | 0.0379 1.58 1.10
1.33) 0.25)

Trisomy 13 30 Chromosomes | CBD 1.14 (1.00, 0.12 (0.00, 4.1053 | 0.0427 1.53 1.07
1.28) 0.22)

Single ventricle 31 CVS CBD 1.22 (1.00, 0.18 (0.00, 3.9021 | 0.0482 1.75 1.04
1.50) 0.33)
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PLEASE SEE MAIN TEXT FOR TABLE 14




Table 15.: Small Intestinal Stenosis or Atresia

- Introductory Space — Time Regression Models
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Lagged Parameter Model Parameters
Variables Parameter Estimate (C.1.) P-Value | Parameter Value Parameter P-Value
Additive Model - Drugs S.D. 0.4633
spreml(Rate ~ Cigarettes + Cannabis + anlyr + Binge.Alcohol + Cocaine) LogLik -112.1308
Cannabis 1.15 (0.46, 1.84) 0.0014 psi 0.8736 <2.2e-16
lambda -0.2041 0.04235
Interactive Model - Drugs
spreml(Rate ~ Cigarettes * Cannabis * anlyr * Binge.Alcohol + Cocaine)
Cigarettes: Cannabis: Binge.Alcohol 57.95(30.14, 85.75) | 4.41E-05 S.D. 0.8069
Cannabis: Binge.Alcohol 30.95 (15.37,46.53) | 9.90E-05 LogLik -100.5249
Cigarettes: Cannabis: Binge.Alcohol: Analgesics 11.55 (3.04, 20.06) 0.0078 psi 0.9063 <2.2e-16
Cigarettes: Analgesics -3.12 (-5.07, -1.17) 0.0018 lambda -0.2276 0.01861
Cigarettes: Cannabis: Analgesics -3.96 (-6.04, -1.88) 0.0002
Cigarettes: Cannabis -13.09 (-19.59, -6.59) | 7.87E-05
2 Years Lag
Interactive Model - Drugs
spreml(Rate ~ Cigarettes * Cannabis * anlyr * Binge.Alcohol + Cocaine)
Cannabis, 2 Cannabis: Analgesics 68.51 (39.94, 97.07) | 2.60E-06 S.D. 0.4309
Cocaine -1.36 (-2.18, -0.53) 0.00126 LogLik -75.0846
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Cigarettes: Cannabis: Analgesics -160.88 (-236.65, -85.11) | 3.16E-05 psi 0.8940 <2.2e-16
Cigarettes: Binge.Alcohol -159.19 (-224.69, -93.7) | 1.90E-06 rho -0.5234 2.31E-05
Cannabis: Analgesics: Binge.Alcohol -170.52 (-233.74, -107.31) | 1.24E-07
4 Years Lag
Interactive Model - Drugs
spreml(Rate ~ Cigarettes * Cannabis * anlyr * Binge.Alcohol + Cocaine)
Cannabis, 4 Cigarettes: Analgesics 418.42 (221.76, 615.07) | 3.04E-05 S.D. 0.4485
Cannabis: Analgesics 1284.76 (677.88, 1891.64) | 3.34E-05 LogLik -19.5113
Cigarettes 1335.95 (704.65, 1967.25) | 3.36E-05 lambda -0.7130 1.59E-06
Cannabis 4106.59 (2160.15, 6053.02) | 3.55E-05
Cigarettes: Cannabis -17101.54 (-26215.01, -7988.07) 0.0002
Cigarettes: Cannabis: Analgesics -5380.17 (-8221.58, -2538.76) 0.0002
Analgesics -101.13 (-144.83, -57.43) | 5.73E-06




Table 16.: Small Intestinal Stenosis or Atresia

- Cannabinoid Space — Time Regression Models
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Lagged Parameter Model Parameters
Variables Parameter Estimate (C.1.) P-Value Parameter Value Parameter P-
Value
Additive Model - Cannabinoids
spreml(Rate ~ Cigarettes + THC + CBG + CBD + anlyr + Binge.Alcohol + Cocaine)
CBG 0.96221 (0.28, 1.64) 0.0055 S.D. 0.4323
Binge.Alcohol 8.50833 (1.49, 15.53) 0.0175 LogLik -107.7976
THC -1.57158 (-3.08, -0.06) 0.0416 psi 0.9129 <2.2e-16
Cigarettes -6.73252 (-13.04, -0.43) 0.0363 rho -0.2431 0.01896
Interactive Model - Cannabinoids
spreml(Rate ~ Cigarettes * THC * CBG * CBD + anlyr + Binge.Alcohol + Cocaine)
Cigarettes: THC: Binge.Alcohol 5169.433 (3191.79, 7147.08) 3.00E-07 S.D. 0.6566
THC 172.247 (93.57, 250.92) 1.78E-05 LogLik -87.0831
Cigarettes 1748.111 (926.38, 2569.84) 3.05E-05 psi 0.9267 <2.2e-16
Cigarettes: THC: CBG: Binge.Alcohol 480.252 (250.09, 710.41) 4.32E-05 lambda -0.2760 0.0039
Cigarettes: CBG 339.558 (175.8, 503.32) 4.82E-05
Binge.Alcohol 1561.587 (780.78, 2342.4) 8.86E-05
CBG: Binge.Alcohol 276.267 (124.22, 428.31) 0.0004
Cigarettes: CBG: Binge.Alcohol -1470.381 (-2232.93, -707.83) 0.0002
CBG -63.136 (-95.55, -30.73) 0.0001
Cigarettes: THC: CBG -109.577 (-164.86, -54.3) 0.0001
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Cigarettes: Binge.Alcohol -7753.892 (-11552.85, -3954.94) 6.32E-05
THC: Binge.Alcohol -796.23 (-1149.18, -443.28) 9.79E-06
Cigarettes: THC -1143.639 (-1586.1, -701.18) 4.06E-07
1 Years Lag
Interactive Model - Cannabinoids
spreml(Rate ~ Cigarettes * THC * CBG * CBD + anlyr + Binge.Alcohol + Cocaine)
THC, 1 Cigarettes: CBD 510 (212.08, 807.92) 0.0008 S.D. 0.4457
CBG, 1 Cigarettes: THC: CBD 563 (229.8, 896.2) 0.0009 LogLik -91.2983
CBD, 1 Cigarettes: THC: CBG 1770 (513.64, 3026.36) 0.0056 psi 0.8824 <2.2e-16
THC 5.51 (0.37, 10.65) 0.0356 lambda -0.3009 0.0050
Cigarettes: THC -25.5 (-50.78, -0.22) 0.0479
THC: CBG -367 (-625.72, -108.28) 0.0054
Cigarettes: CBG: CBD -13800 (-22286.8, -5313.2) 0.0014
2 Years Lag
Interactive Model - Cannabinoids
spreml(Rate ~ Cigarettes * THC * CBG * CBD + anlyr + Binge.Alcohol + Cocaine)
THC, 2 Cigarettes: CBG 2040.99 (821.21, 3260.77) 0.0010 S.D. 0.4457
CBG, 2 CBG: CBD 6381.11 (2226.34, 10535.89) 0.0026 LogLik -91.2983
CBD, 2 THC 10.36 (1.06, 19.65) 0.0289 psi 0.8779 <2.2e-16
Cigarettes: THC -44.97 (-88.58, -1.36) 0.0432 lambda -0.4332 0.0001
THC: CBG: CBD -4896.22 (-8596.78, -1195.65) 0.0095
CBD -177.12 (-308.63, -45.6) 0.0083
Cigarettes -70.36 (-115.93, -24.79) 0.0025
CBG -493.37 (-753.84, -232.89) 0.0002
3 Years Lag

Interactive Model - Cannabinoids
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spreml(Rate ~ Cigarettes * THC * CBG * CBD + anlyr + Binge.Alcohol + Cocaine) S.D. 0.4457
THC, 3 CBD 3.38(0.51, 6.26) 0.0211 LogLik -91.2983
CBG, 3 Cigarettes: CBD -16.7 (-29.52, -3.87) 0.0107 psi 0.8615 <2.2e-16
CBD, 3 Cigarettes -72.4 (-122.84, -21.96) 0.0049 lambda -0.3782 0.0162




Table 17.: Small Intestinal Stenosis or Atresia

- Comprehensive Cannabinoid Space — Time Regression Models
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Lagged Parameter Model Parameters
Variables -
Parameter Estimate (C.1.) P-Value Parameter Value Parameter P-
Value
Interactive Model - Including Sociodemographics
spreml(Rate ~ Cigarettes * THC * CBG * CBD + anlyr + Binge.Alcohol + Cocaine + Income +
5 Races)
CBG 1.15 (0.45, 1.85) 0.0014 S.D. 0.4457
Cigarettes: CBD 1.33(0.36, 2.3) 0.0071 LogLik -91.2983
Binge.Alcohol 7.21(0.37, 14.04) 0.0388 psi 0.9046 <2.2e-16
THC -0.98 (-1.96, -0.01) 0.0476 rho -0.2587 0.01168
1 Years Lag
Interactive Model - Including Sociodemographics
spreml(Rate ~ Cigarettes * THC * CBG * CBD + anlyr + Binge.Alcohol + Cocaine + Income +
5 _Races)
THC, 1 Cigarettes: THC 109.89 (22.86, 196.92) 0.0133 S.D. 0.4457
CBG, 1 Cigarettes: THC: CBD 24.48 (3.55, 45.41) 0.0219 LogLik -91.2983
CBD, 1 THC -22.12 (-42.11, -2.14) 0.0300 psi 0.8695 <2.2e-16
THC: CBD -5.4 (-10.23, -0.58) 0.0282 rho -0.3226 0.005233
CBG -1.41 (-2.34,-0.48) 0.0030
2 Years Lag
Interactive Model - Including Sociodemographics
spreml(Rate ~ Cigarettes * THC * CBG * CBD + anlyr + Binge.Alcohol + Cocaine + Income +
5 Races)
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THC, 2 CBD 1(0.41, 1.6) 0.0009 S.D. 0.4457

CBG, 2 CBG 1.74 (0.53, 2.94) 0.0046 LogLik -91.2983

CBD, 2 THC: CBD 1.75 (0.48, 3.03) 0.0072 psi 0.8514 <2.2¢-16
THC 5.8 (0.8, 10.8) 0.0231 tho -0.4179 0.00155




Table 18.: Small Intestinal Stenosis or Atresia

- E-Values from Mixed Effects and Panel Regression Models
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Parameter Estimate (C.1.) R.R.(C.1) E-Values

MIXED EFFECTS

Cannabis Only

Cannabis 2.83(2.03,3.63) 5.66 (3.48, 3.19) 10.80, 6.43
Additive Model - Drugs

Cannabis 1.46 (0.69, 2.22) 3.91(1.93,7.92) 7.28,3.27

Interactive Model - Drugs

Cigarettes: Cannabis: Binge.Alcohol

5638.66 (3549.85, 7727.46)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cigarettes: Cannabis: Binge.Alcohol: Analgesics

1797.36 (1122.19, 2472.54)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cannabis: Binge.Alcohol

8008.91 (4682.06, 11335.77)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cannabis: Binge.Alcohol: Analgesics

2546 (1467.93, 3624.06)

Infinity (Infinity, Infinity)

Infinity, Infinity

Additive Model - Cannabinoids

THC 0.94 (0.41, 1.48) 2.41(1.47, 3.93) 4.24,2.31
CBD 0.84 (0.25,1.43) 2.18 (1.27,3.74) 3.78,1.85
Interactive Model - Cannabinoids

CBG: CBD 10.47 (7.47, 13.47) 4.59E+06 (6.01E+04, 3.51E+08) 3.18E+06, 1.20E+05
CBD 34.98 (24.72, 45.24) 1.85E+22 (6.74E+15, 5.11E+28) 3.71E+22, 1.34E+16
THC: CBG: CBD 0.57 (0.37, 0.76) 2.29 (1.73, 3.04) 4.03,2.87
CBG 32.45 (19.49, 45.41) 2.45E+20 (3.32E+12, 6.15E+28) 3.05E+20, 6.65E+12

Cigarettes: THC: CBD

13.79 (6.1, 21.48)

6.03E+08 (8.99E+06, 4.03E+13)

1.21E+09, 1.80E+04

Additive Model - Including Sociodemographics
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THC

1.45 (0.79, 2.12)

3.97 (2.12, 7.41)

7.41, 3.67

CBD

0.81(0.21, 1.4)

2.145 (1.24, 3.77)

3.74,1.77

Interactive Model - Including Sociodemographics

CBG

77.88 (58.11, 97.66)

3.15E+38 (7.30E+28, 1.36E+48)

6.30E+38, 1.46E+29

CBD

63.63 (47.13, 80.13)

2.82E+31 (2.57E+23, 3.09E+39)

5.64E+31, 5.15E+23

CBG: CBD

18.44 (13.62, 23.25)

1.29E+09 (5.85E+06, 2.87E+11)

2.59E+09, 1.17E+07

Cigarettes: THC

2351.21 (1186.17, 3516.25)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cigarettes: THC: CBD

548.39 (275.16, 821.63)

2.07E+284 (4.31E+141, Infinity)

Infinity, 8.61E+141

Cigarettes: THC: CBG: CBD

135.08 (66.39, 203.77)

5.92E+66 (2.01E+33, 1.74E+100)

1.18E+67, 4.03E+33

Cigarettes: THC: CBG

575.97 (282.33, 869.61)

1.19E+271 (8.89E+137, Infinity)

Infinity, 1.77E+138

PANEL MODELS

Additive Model - Including Sociodemographics

CBG

1.07 (0.51, 1.63)

3.31(1.77,3.17)

6.06, 2.94

CBD

0.61 (0.23, 0.99)

1.97 (1.298, 3.02)

3.36,1.91

Interactive Model - Including Sociodemographics

Cigarettes: THC

20.18 (10.52, 29.83)

4.31E+28 (9.13E+14, 2.04E+42)

8.63E+28, 1.82E+15

CBG: CBD 0.92 (0.4, 1.44) 20.014 (3.65, 109.74) 39.53,6.76
CBD 3.68 (1.19, 6.16) 1.65E+05 (49.84, 5.46E+08) 3.30E+05, 99.18
1 Years Lag

Cigarettes: THC

6.68 (3.64, 9.72)

2.42E+06 (70.07, 8.34E+03)

4.83E+03, 139.63




Table 19.: Small Intestinal Stenosis or Atresia

- E-Values from Space — Time Reqgression Models
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Parameter

Estimate (C.1.)

RR.(C1)

E-Values

SPACE-TIME MODELS

Additive Model - Drugs

Cannabis

1.15 (0.46, 1.84)

9.60 (2.48, 37.17)

18.70, 4.40

Interactive Model - Drugs

Cigarettes: Cannabis: Binge.Alcohol

57.95 (30.14, 85.75)

2.40E+28 (6.17E+14, 9.36E+41)

4.81E+28, 1.23E+15

Cannabis: Binge.Alcohol

30.95 (15.37, 46.53)

1.44E+15 (3.48E+07, 5.96E+22)

2.88E+15, 6.96E+07

Cigarettes: Cannabis: Binge.Alcohol: Analgesics

11.55 (3.04, 20.06)

4 54E+05 (31.57, 6.55E+09)

9.09E+05, 62.64

2 Years Lag

Interactive Model - Drugs

Cannabis: Analgesics

68.51 (39.94, 97.07)

6.69E+62 (4.80E+36, 9.34E+88)

1.33E+63, 9.61E+36

4 Years Lag

Interactive Model - Drugs

Cannabis: Analgesics

1284.76 (677.88, 1891.64)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cannabis

4106.59 (2160.15, 6053.02)

Infinity (Infinity, Infinity)

Infinity, Infinity

Additive Model - Cannabinoids

CBG

0.96221 (0.28, 1.64)

16.09 (2.45, 105.29)

31.67,4.35

Interactive Model - Cannabinoids

Cigarettes: THC: Binge.Alcohol

5169.433 (3191.79, 7147.08)

Infinity (Infinity, Infinity)

Infinity, Infinity

THC

172.247 (93.57, 250.92)

4.79E+103 (2.62E+56, 8.74E+150)

9.58E+103, 5.25E+56

Cigarettes: THC: CBG: Binge.Alcohol

480.252 (250.09, 710.41)

1.19E+289 (6.58E+150, Infinity)

Infinity, 1.31E+151

Cigarettes: CBG

339.558 (175.8, 503.32)

2.45E+204 (1.04E+106, 5.80E+302)

Infinity, 2.08E+106
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CBG: Binge.Alcohol

276.267 (124.22, 428.31)

1.96E+166 (9.07E+74, 4.26E+257)

Infinity, 1.81E+75

1 Years Lag

Interactive Model - Cannabinoids

Cigarettes: CBD

510 (212.08, 807.92)

Infinity (2.65E+187, Infinity)

Infinity, Infinity

Cigarettes: THC: CBD

563 (229.8, 896.2)

Infinity (1.78E+204, Infinity)

Infinity, Infinity

Cigarettes: THC: CBG

1770 (513.64, 3026.36)

Infinity (Infinity, Infinity)

Infinity, Infinity

THC

5.51 (0.37, 10.65)

7.74E+04 (2.18, 2.74E+09)

1.55E+05, 3.79

2 Years Lag

Interactive Model - Cannabinoids

Cigarettes: CBG

2040.99 (821.21, 3260.77)

Infinity (Infinity, Infinity)

Infinity, Infinity

CBG: CBD 6381.11 (2226.34, 10535.89) Infinity (Infinity, Infinity) Infinity, Infinity
THC 10.36 (1.06, 19.65) 7.65E+09 (10.81, 5.41E+18) 1.53E+10, 21.11
3 Years Lag

Interactive Model - Cannabinoids

CBD 3.38 (0.51, 6.26) 183.44 (2.20, 1.52E+04) 366.39, 3.83
Interactive Model - Including Sociodemographics

CBG 1.15 (0.45, 1.85) 11.34 (2.58, 49.90) 22.17,4.59
Cigarettes: CBD 1.33(0.36, 2.3) 16.55 (2.15, 127.21) 32.59,3.72

1 Years Lag

Interactive Model - Including Sociodemographics

Cigarettes: THC

109.89 (22.86, 196.92)

4.32E+91 (1.62E+19, 1.15E+164)

8.68E+91, 3.25E+19

Cigarettes: THC: CBD

24.48 (355, 45.41)

2.57E+20 (985.96, 6.70E+37)

5.14E+20, 1.97E+03

2 Years Lag

Interactive Model - Including Sociodemographics

CBD 1.00 (0.41, 1.60) 6.70 (2.18, 20.54) 12.89, 3.80
CBG 1.74 (0.53, 2.94) 26.83 (2.76, 260.21) 53.17,4.98
THC: CBD 1.75 (0.48, 3.03) 274.86 (2.47, 313.56) 55.22, 4.38
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THC 5.80 (0.80, 10.8) 2.96E+04 (4.60, 7.71E+08) 1.19E+05, 6.68 ‘




Table 20: Obstructive Genitourinary Defects

- Introductory Space — Time Regression Models
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Lagged Parameter Model Parameters

Variables -

Parameter Estimate (C.1.) P-Value | Parameter Value Model P-
Value

Additive Model - Drugs S.D. 0.2111
spreml(Rate ~ Cigarettes + Cannabis + Analgesics + Bng.Alcohol + Cocaine) LogLik -34.1136
Cannabis Alone Significant
Cannabis 10.61 (4.7, 16.52) 0.0004 psi 0.9753 <2.2e-16
Interactive Model - Drugs S.D. 2.5182
spreml(Rate ~ Cigarettes * Cannabis * Analgesics * Bng.Alcohol + LogLik -265.2450
Cocaine)
Cannabis Alone Significant
Cannabis 10.61 (4.7, 16.52) 0.0004 psi 0.9752598 <2.2e-16
Interactive Model - Drugs - 1 Years Lag
spreml(Rate ~ Cigarettes * Cannabis * Analgesics * Bng.Alcohol + Cocaine)

Cannabis, 1 | No significant terms remaining in final model
2 Years Lag
Interactive Model - Drugs
spreml(Rate ~ Cigarettes * Cannabis * Analgesics * Bng.Alcohol + Cocaine)

Cannabis, 2 | Cannabis 241.68 (65.24, 418.12) 0.0073 S.D. 11.2206
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Cocaine 28.63 (5.32, 51.93) 0.0161 LogLik -118.9370
Cannabis: Bng.Alcohol -1008.107 (-1720.7, - 0.0056
295.52)
Bng.Alcohol -3055.107 (-5206.69, - 0.0054
903.52)

THC S.D. 2.5182

spreml(Rate ~ THC) LogLik -265.2450

THC 8.14 (4.27,12) 3.78E- psi 0.9769 <2.2e-16
05

Cannabigerol S.D. 2.5789

spreml(Rate ~ Cannabigerol) LogLik -270.4920

Cannabigerol 7.54 (3.14,11.94) 7.74E- psi 0.9752 <2.2e-16
04

Cannabidiol S.D. 2.7184

spreml(Rate ~ Cannabidiol) LogLik -270.4921

Cannabidiol 4.42 (-0.34,9.18) 0.0687 psi 0.9731 <2.2e-16

Additive Model - Drugs & Cannabinoids S.D. 2.5182

spreml(Rate ~ Cigarettes + THC + CBG + CBD + Analgesics + Bng.Alcohol + Cocaine) LogLik -271.5570

THC Alone Significant

THC 8.14 (4.27,12) 3.78E- psi 0.9769 <2.2e-16
05

Interactive Model - Drugs & Cannabinoids S.D. 2.4848

spreml(Rate ~ Cigarettes * THC * CBG * CBD + Analgesics + Bng.Alcohol + Cocaine) LogLik -264.4223

THC Alone Significant

THC 8.14 (4.27,12) 3.78E- psi 0.9768613 <2.2e-16
05
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Interactive Model - Cannabinoids - 1 Years Lag

THC, 1 spreml(Rate ~ Cigarettes * THC * CBD + Analgesics + Bng.Alcohol + Cocaine)
CBD, 1 No significant terms remaining in final model

Interactive Model - Cannabinoids - 2 Years Lag
THC, 2 spreml(Rate ~ Cigarettes * THC * CBD + Analgesics + Bng.Alcohol + Cocaine)
CBD, 2 No significant terms remaining in final model




Table 21: Obstructive Genitourinary Defects

- Cannabinoid Space — Time Regression Models
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Lagged Variables Parameter Model Parameters
Parameter Estimate (C.1.) P- Parameter Value Model P-
Value Value
1 Spatial Lag - Interactive Model, Cannabinoids
THC * CBD
spreml(Rate ~ Cigarettes * THC * CBD + Analgesics + Bng.Alcohol + Cocaine)
THC, 2 Cigarettes 2767.39 (1031.71, 4503.07) | 0.0018 S.D. 2.4975
CBD, 2 Cigarettes: CBD 792.04 (292.87,1291.2) | 0.0019 LogLik -264.8543
Cigarettes: THC: CBD 912.27 (282.87, 1541.68) | 0.0045 psi 0.9768 <2.2e-16
Cigarettes: THC 3167.74 (941.61, 5393.88) | 0.0053
THC -712.92 (-1234.34, -191.5) | 0.0074
THC: CBD -208.76 (-356.95, -60.56) | 0.0058
CBD -188.38 (-305.1, -71.66) | 0.0016
1 Spatial Lag - Interactive Model, Cannabinoids
THC * CBG
spreml(Rate ~ Cigarettes * THC * CBG + Analgesics + Bng.Alcohol + Cocaine)
THC, 2 Cigarettes: THC: CBG 855.74 (286.28, 1425.2) | 0.0032 S.D. 2.4975
CBG, 2 Cigarettes: THC 2980.74 (841.4,5120.08) | 0.0063 LogLik -264.8543
Cigarettes 2664.14 (705.35, 4622.92) | 0.0077 psi 0.9768 < 2.2e-16
Cigarettes: CBG 755.71 (171.07, 1340.34) | 0.0113
THC -655.51 (-1157.24, -153.79) | 0.0104
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CBG -185.75 (-327.89, -43.62) | 0.0104

THC: CBG -194.05 (-327.64, -60.46) | 0.0044

1 Spatial, 1 Temporal Lag - Interactive Model, Cannabinoids

spreml(Rate ~ Cigarettes * THC * CBD + Analgesics + Bng.Alcohol + Cocaine)
THC, 1 Cigarettes: THC: CBD 1394.48 (386.59, 2402.38) | 0.0067 S.D. 2.8611
CBD, 1 Cigarettes: THC: THC.Spatial: CBD 1384.11 (374.49, 2393.72) | 0.0072 LogLik -189.0979
THC, 1 Spatial Cigarettes: THC 5000.58 (1323.37, 8677.78) | 0.0077 psi 0.9833 <2.2e-16

Cigarettes: THC: THC.Spatial 4975.93 (1182.67, 8769.19) | 0.0101

Cigarettes 1787.24 (184.11, 3390.37) | 0.0289

Cigarettes: CBD 522.98 (44.27,1001.7) | 0.0323

CBD -134.19 (-253.84, -14.55) | 0.0279

THC -1084.97 (-1955.48, -214.47) | 0.0146

THC: THC -1084.66 (-1951.65, -217.67) | 0.0142

THC: CBD -311.84 (-552.33, -71.36) | 0.0110

THC: THC: CBD -307.33 (-537.59, -77.07) | 0.0089

1 Spatial, 2 Temporal Lags - Interactive Model, Cannabinoids

spreml(Rate ~ Cigarettes * THC * CBD + Analgesics + Bng.Alcohol + Cocaine)
THC, 2 Cigarettes 137535.9 (58078.87, 216992.93) | 0.0007 S.D. 9.6638
CBD, 2 Cigarettes: CBD 48350.5 (20095.92, 76605.08) | 0.0008 LogLik -116.844
THC, 1 Spatial Cigarettes: THC 217699.3 (89605.46, 345793.14) | 0.0009 rho -0.68203 0.002462

Cigarettes: THC: CBD 76973.5 (31232.59, 122714.41) | 0.0010

THC 11707.8 (4631.81, 18783.79) | 0.0012

THC: THC.Spatial 19063 (7395.32, 30730.68) | 0.0014

THC: CBD -18888.3 (-30246.11, -7530.49) | 0.0011

Cigarettes: THC: THC -78290.4 (-125332.16, -31248.64) | 0.0011

THC -53462 (-85264.37, -21659.63) | 0.0010

Cigarettes: THC -48251.3 (-76830.65, -19671.95) | 0.0009
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CBD -11798.1 (-18785.3, -4810.9) ‘ 0.0009 ‘ ‘




Table 22: Obstructive Genitourinary Defects

- Comprehensive Cannabinoid Space — Time Regression Models
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Lagged Parameter Model Parameters
Variables Parameter Estimate (C.1.) P-Value Parameter Value Model P-
Value

Interactive Model - Including Sociodemographics
spreml(Rate ~ Cigarettes * THC * CBD + Analgesics + Bng.Alcohol + Cocaine + Income + 5_Races)
Hispanic 7.56 (3.56, 11.55) 0.0002 S.D. 2.3684
THC 37.58 (9.36, 65.79) 0.0090 LogLik -254.1933
Am.Indian/Alaskan.Native 124.12 (30.78, 217.46) 0.0092 psi 0.9663 <2.2e-16
THC: CBG 6.95 (0.33, 13.56) 0.0395
Income -13.2 (-23.45, -2.94) 0.0117
1 Years Lag
Interactive Model - Including Sociodemographics
spreml(Rate ~ Cigarettes * THC * CBD + Analgesics + Bng.Alcohol + Cocaine + Income + 5_Races)

THC, 1 Hispanic 7.59 (3.07, 12.12) 0.0010 S.D. 3.2724

CBD, 1 Cigarettes: THC 46.25 (16.84, 75.67) 0.0021 LogLik -187.7251
Am.Indian/Alaskan.Native 148.61 (47.3, 249.93) 0.0040 psi 0.9689 <2.2e-16
Income -17.24 (-30.36, -4.12) 0.0100
2 Years Lag

Interactive Model - Including Sociodemographics

spreml(Rate ~ Cigarettes * THC * CBD + Analgesics + Bng.Alcohol + Cocaine + Income + 5_Races)
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THC, 2 Hispanic 12.81 (8.33,17.3) 2.17E-08 S.D. 3.2724
CBD, 2 Cigarettes: THC: CBD 6151.83 (2693.75, 9609.91) 0.0005 LogLik -187.7251
Cigarettes: THC 22951.53 (9883.29, 36019.77) 0.0006 psi 0.0000 NA
Cigarettes 15335.11 (5177.59, 25492.63) 0.0031
Cigarettes: CBD 4078.6 (1248.29, 6908.9) 0.0047
Am.Indian/Alaskan.Native 107.64 (18.06, 197.22) 0.0185
CBD -894.76 (-1549.98, -239.53) 0.0074
Bng.Alcohol -186.96 (-318.68, -55.23) 0.0054
THC -5115.33 (-8111.04, -2119.62) 0.0008
THC: CBD -1370.14 (-2158.79, -581.48) 0.0007




Table 23: Obstructive Genitourinary Defects

- E-Values from Mixed Effects and Panel Regression Models

Parameter Estimate (C.1.) R.R.(C.1) E-Values

MIXED EFFECTS MODELS

Cannabis Only

Cannabis 14.35 (8.44, 20.27) 94.85 (15.13, 594.66) 189.20, 29.75
Additive Model - Drugs

Cannabis 14.35 (8.44, 20.27) 94.85 (15.13, 594.66) 189.20, 29.75

Interactive Model - Drugs

Cigarettes: Cannabis: Analgesics

333.48 (176.14, 490.83)

1.62E+51 (4.54E+27, 5.81E+74)

3.25E+51, 9.09E+27

Cannabis: Bng.Alcohol: Analgesics

700.3 (368.06, 1032.54)

3.47E+107 (6.41E+57, 1.88E+157)

6.94E+107, 1.29E+58

Cannabis: Bng.Alcohol

921.93 (370.26, 1473.6)

3.75E+1241 (9.87E+58, 1.43E_224)

7.51E+141, 1.97E+59

Additive Model - Cannabinoids

THC

43.47 (8.06, 78.89)

1.72E+06 (18.61, 1.59E+11)

3.43E+06, 36.72

Interactive Model - Cannabinoids

Cigarettes: THC

1945.4 (832.31, 3058.5)

2.73E+296 (5.73E+130, Infinity)

Infinity, 1.14E+131

Cigarettes: THC: CBG

482.22 (204.16, 760.28)

3.02E+73 (1.23E+32, 7.37E+114)

6.04E+73, 2.46E+32

Additive Model - Including Sociodemographics

THC

11.62 (7.82, 15.42)

58.96 (16.01, 217.10)

117.42, 31.52

Interactive Model - Including Sociodemographics

THC: CBG 918.55 (286.58, 1550.52) 2.27E+138 (4.07E+45, 1.27E+231) 4 55E+138, 8.15E+45
THC: CBG: CBD 24854 (72.69, 424.4) 2.73E+37 (4.24E+11, 1.76E+63) 5.46E+37, 8.49E+11
THC 3517.29 (910.69, 6123.89) Infinity (1.78E+147, Infinity) Infinity, 3.57E+147
THC: CBD 946.55 (214.43, 1678.68) 3.75E+142 (1.34E+35, 1.05E+250) 7 51E+142, 2.69E+35
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PANEL MODELS

Interactive Model - Including Sociodemographics

THC

7726.08 (3068.06, 12384.1)

Infinity (9.29E+186, Infinity)

Infinity, Infinity

THC: CBD

2899.61 (1040.91, 4758.31)

1.47E+176 (2.93E+63, 7.39E+288)

Infinity, 5.86E+63

THC: CBG: CBD

202.14 (44.72, 359.56)

1.91E+12 (545.0179, 6.69E+21)

3.82E+12, 1.09E+03

Sociodemographic Interactive Model - 1 Lag

Cigarettes: THC: CBD

163.56 (80.31, 246.82)

4.75E+08 (1.85E+04, 1.21E+13)

9.50E+08, 3.71E+04

Cigarettes: THC

719.66 (347.71, 1091.61)

1.50E+38 (3.05E+18, 7.39E+57)

3.01E+38, 6.11E+18

Additive Model - Drugs

Cannabis

10.61 (4.7, 16 52)

5.66E+19 (8.37E+08, 3.82E+30)

1.13E+20, 1.67E+09

Interactive Model - Drugs

Cannabis

10.61 (4.7, 16 52)

44.75 (5.40, 370.45)

89.06, 10.29

Interactive Model - Drugs, 2 Lags

Cannabis 241.68 (65.24, 418.12) 3.25E+08 (204.43, 5.18E+14) 6.51E+08, 408.35
THC

THC 8.14 (4.27,12) 19.67 (4.78, 80.93) 38.84,9.03
Cannabigerol

Cannabigerol 7.54 (3.14, 11.94) 14.30 (3.04, 67.26) 28.10,5.53
Additive Model - Drugs & Cannabinoids

THC 8.14 (4.27,12) 18.91 (4.68, 76.34) 37.31,8.84
Interactive Model - Drugs & Cannabinoids

THC 8.14 (4.27, 12) 19.67 (47.78, 80.94) 38.84,9.04

1 Spatial Lag - Interactive Model, THC * CBD

Cigarettes: CBD

792.04 (292.87, 1291.2)

2.15E+125 (3.19E+46, 1.45E+204)

4.31E+125, 6.39E+46

Cigarettes: THC: CBD

912.27 (282.87, 1541.68)

2.29E+144 (9.107E+44, 5.77E+243)

4.58E+144, 1.83E+45

Cigarettes: THC

3167.74 (941.61, 5393.88)

Infinity (5.16E+149, Infinity)

Infinity, 1.03E+150

1 Spatial Lag - Interactive Model, THC * CBG

Cigarettes: THC: CBG

855.74 (286.28, 1425.2)

8.09E+135 (4.45E+45, 1.47E+226)

1.61E+136, 8.91E+45
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Cigarettes: THC

2980.74 (841.4, 5120.08)

Infinity (2.06E+134, Infinity)

Infinity, 4.14E+134

Cigarettes: CBG

755.71 (171.07, 1340.34)

1.05E+120 (2.27E+27, 4.83E+212)

2.09E+120, 4.54E+27

1 Spatial, 1 Temporal Lag Cannabinoids

Cigarettes: THC: CBD

1394.48 (386.59, 2402.38)

4.17E+192 (4.79E+53, Infinity)

Infinity, 9.59E+53

Cigarettes: THC: THC.Spatial: CBD

1384.11 (374.49, 2393.72)

1.53E+1981 (1.02E+52, Infinity)

Infinity, 2.05E+52

Cigarettes: THC

5000.58 (1323.37, 8677.78)

Infinity (6.65E+183, Infinity)

Infinity, Infinity

Cigarettes: THC: THC.Spatial

4975.93 (1182.67, 8769.19)

Infinity (2.62E+164, Infinity)

Infinity, Infinity

Cigarettes: CBD

522.98 (44.27,1001.7)

1.74E+72 (1.77E+06, 1.70E+138)

3.47E+72, 3.54E+06

1 Spatial, 2 Temporal Lags Cannabinoids

Cigarettes: CBD

48350.5 (20095.92, 76605.08)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cigarettes: THC

217699.3 (89605.46, 345793.14)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cigarettes: THC: CBD

769735 (3123259, 122714.41)

Infinity (Infinity, Infinity)

Infinity, Infinity

THC

11707.8 (4631.81, 18783.79)

Infinity (1.01E+190, Infinity)

Infinity, Infinity

THC: THC.Spatial

19063 (7395.32, 30730.68)

Infinity (2.51E+303, Infinity)

Infinity, Infinity

Interactive Model - Including Sociodemographics

THC

37.58 (9.36, 65.79)

1.86E+06 (37.31, 9.29E+10)

3.72E+06, 74.13

THC: CBG

6.95 (0.33, 13.56)

14.44 (1.14, 1852.37)

28.36, 1.54

Sociodemographic Interactive, 1 Lag

Cigarettes: THC

46.25 (16.84, 75.67)

3.85E+05 (109.80, 1.35E+09)

7.71E+05, 219.10

Sociodemographic Interactive, 2 Lags

Cigarettes: THC: CBD

6151.83 (2693.75, 9609.91)

1.63E+301 (1.72E+132, Infinity)

Infinity, 3.45E+132

Cigarettes: THC

22951.53 (9883.29, 36019.77)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cigarettes: CBD

4078.6 (1248.29, 6908.9)

5.02E+199 (2.51E+61, Infinity)

Infinity, 5.02E+61
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Table 24: Obstructive Genitourinary Defects

- E-Values from Space-Time Reqression Models
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Parameter

Estimate (C.1.)

RR.(C1)

E-Values

Additive Model - Drugs

Cannabis

10.61 (4.7, 16 52)

5.66E+19 (8.37E+08, 3.82E+30)

1.13E+20, 1.67E+09

Interactive Model - Drugs

Cannabis

10.61 (4.7, 16 52)

44.75 (5.40, 370.45)

89.06, 10.29

Interactive Model - Drugs, 2 Lags

Cannabis 241.68 (65.24, 418.12) 3.25E+08 (204.43, 5.18E+14) 6.51E+08, 408.35
THC

THC 8.14 (4.27, 12) 19.67 (4.78, 80.93) 38.84,9.03
Cannabigerol

Cannabigerol 7.54 (3.14, 11.94) 14.30 (3.04, 67.26) 28.10,5.53
Additive Model - Drugs & Cannabinoids

THC 8.14 (4.27,12) 18.91 (4.68, 76.34) 37.31,8.84
Interactive Model - Drugs & Cannabinoids

THC 8.14 (4.27,12) 19.67 (47.78, 80.94) 38.84,9.04

1 Spatial Lag - Interactive Model, THC * CBD

Cigarettes: CBD

792.04 (292.87, 1291.2)

2.15E+125 (3.19E+46, 1.45E+204)

4.31E+125, 6.39E+46

Cigarettes: THC: CBD

912.27 (282.87, 1541.68)

2.29E+144 (9.107E+44, 5.77TE+243)

4.58E+144, 1.83E+45

Cigarettes: THC

3167.74 (941.61, 5393.88)

Infinity (5.16E+149, Infinity)

Infinity, 1.03E+150

1 Spatial Lag - Interactive Model, THC * CBG

Cigarettes: THC: CBG

855.74 (286.28, 1425.2)

8.09E+135 (4.45E+45, 1.47E+226)

1.61E+136, 8.91E+45

Cigarettes: THC

2980.74 (841.4, 5120.08)

Infinity (2.06E+134, Infinity)

Infinity, 4.14E+134

Cigarettes: CBG

755.71 (171.07, 1340.34)

1.05E+120 (2.27E+27, 4.83E+212)

2.09E+120, 4.54E+27
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1 Spatial, 1 Temporal Lag Cannabinoids

Cigarettes: THC: CBD

1394.48 (386.59, 2402.38)

4.17E+192 (4.79E+53, Infinity)

Infinity, 9.59E+53

Cigarettes: THC: THC.Spatial: CBD

1384.11 (374.49, 2393.72)

1.53E+1981 (1.02E+52, Infinity)

Infinity, 2.05E+52

Cigarettes: THC

5000.58 (1323.37, 8677.78)

Infinity (6.65E+183, Infinity)

Infinity, Infinity

Cigarettes: THC: THC.Spatial

4975.93 (1182.67, 8769.19)

Infinity (2.62E+164, Infinity)

Infinity, Infinity

Cigarettes: CBD

522.98 (44.27,1001.7)

1.74E+72 (1.77E+06, 1.70E+138)

3.47E+72, 3.54E+06

1 Spatial, 2 Temporal Lags Cannabinoids

Cigarettes: CBD

48350.5 (20095.92, 76605.08)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cigarettes: THC

217699.3 (89605.46, 345793.14)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cigarettes: THC: CBD

769735 (3123259, 122714.41)

Infinity (Infinity, Infinity)

Infinity, Infinity

THC

11707.8 (4631.81, 18783.79)

Infinity (1.01E+190, Infinity)

Infinity, Infinity

THC: THC.Spatial

19063 (7395.32, 30730.68)

Infinity (2.51E+303, Infinity)

Infinity, Infinity

Interactive Model - Including Sociodemographics

THC

37.58 (9.36, 65.79)

1.86E+06 (37.31, 9.29E+10)

3.72E+06, 74.13

THC: CBG

6.95 (0.33, 13.56)

14.44 (1.14, 1852.37)

28.36,1.54

Sociodemographic Interactive, 1 Lag

Cigarettes: THC

46.25 (16.84, 75.67)

3.85E+05 (109.80, 1.35E+09)

7.71E+05, 219.10

Sociodemographic Interactive, 2 Lags

Cigarettes: THC: CBD

6151.83 (2693.75, 9609.91)

1.63E+301 (1.72E+132, Infinity)

Infinity, 3.45E+132

Cigarettes: THC

22951.53 (9883.29, 36019.77)

Infinity (Infinity, Infinity)

Infinity, Infinity

Cigarettes: CBD

4078.6 (1248.29, 6908.9)

5.02E+199 (2.51E+61, Infinity)

Infinity, 5.02E+61
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Figure Captions

Figure 1. Time trends of selected congenital anomaly incidence rates.

Figure 2. Trends over time of various selected substances, data from National Survey of
Drug Use and Health.

Figure 3. Trends over time of various selected estimates of cannabinoid exposure, data from
National Survey of Drug Use and Health and Drug Enforcement Agency.

Figure 4. Trends of various congenital anomaly incidence rates in relationship to tobacco
exposure.

Figure 5. Trends of various congenital anomaly incidence rates in relationship to cannabis
exposure.

Figure 6. Trends of various congenital anomaly incidence rates in relationship to THC
exposure.

Figure 7. Trends of various congenital anomaly incidence rates in relationship to cannabidiol
exposure.

Figure 8. E-Values of regression lines of relationship of congenital anomaly incidence rates
with tobacco exposure.

Figure 9. E-Values of regression lines of relationship of congenital anomaly incidence rates
with last month exposure.

Figure 10. E-Values of regression lines of relationship of congenital anomaly incidence rates
with cannabis exposure.

Figure 11. E-Values of regression lines of relationship of congenital anomaly incidence rates
with THC exposure.

Figure 12. E-Values of regression lines of relationship of congenital anomaly incidence rates
with cannabidiol exposure.
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Figure 13. Categorical analysis of congenital anomaly incidence rates rates for extreme
quintiles of tobacco exposure.

Figure 14. Categorical analysis of congenital anomaly incidence rates for extreme quintiles
of last month cannabis exposure.

Figure 15. Categorical analysis of congenital anomaly incidence rates for extreme quintiles
of canabidiol exposure.

Figure 16. Map-graph of the incidence of small intestinal atresia or stenosis across USA over
time.

Figure 17. Modelled rates of small intestinal stenosis or atresia rates with rising cannabidiol
exposure in a geospatial model lagged to two years.

Figure 18. Map-graph of the incidence of obstructive genitourinary defects across USA over
time.

Figure 19. Modelled rates of obstructive genitourinary defect with rising cannabidiol
exposure in a geospatial model lagged to two years.
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Data Jittered for Display, Data: RDAS, NSDUH, SAMHDA, SAMHSA

2006 2008 2010 2012 2006 2008 2010 2012

Cannabis Analgesics Cocaine

0.15




State Level Substance Use Trends Across Time
Data Jittered for Display, Data: RDAS, NSDUH, SAMHDA, SAMHSA

2006 2008 2010 2012 2006 2008 2010 2012

Cannabis Analgesics Cocaine

0.15




Log (ETOPFA-Corrected Defect Rates) by Defect Type by Monthly Cigarette Exposure, USA,
Data: NBDPN, CDC Data 1989-1990 - 2011-2015 and NSDUH SAMHDA RDAS SAMHSA
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Log (ETOPFA-Corrected Defect Rates) by Defect Type by Monthly Cigarette Exposure, USA,
Data: NBDPN, CDC Data 1989-1990 - 2011-2015 and NSDUH SAMHDA RDAS SAMHSA
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Log— Scaled— ETOPFA Adjusted— Small Intestinal Stenosis and Atresia Rate by Year

CDC NBDPN Data 2003-2007 — 2011-2015 and NSDUH SAMHSA 2002-2016
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Log— Scaled— ETOPFA Adjusted— Obstructive Genitourinary Disorder Rate by Year
CDC NBDPN Data 2003-2007 - 2011-2015 and NSDUH SAMHSA 2002-2016
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Boxplot of Congential Anomaly Rates by Highest v Lowest Monthly Alcohol Exposure Quintiles
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Boxplot of Congential Anomaly Rates by Highest v Lowest Analgesic Exposure Quintiles

Cloacal exstrophy Interrupted aortic arch Atrial septal defect Pulmonary valve atresia Pyloric stenosis Amniotic Bands Deletion 22q11.2

Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

Aortic valve stenosis al anomalous pulmonary venous connect Cleft lip with cleft palate Small intestinal atresia/stenosis Obstructive genitourinary defect Congenital posterior urethral valves Diaphragmatic hernia

Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

Encephalocele Anophthalmia/microphthalmia Limb deficiencies (reduction defects) Coarctation of the aorta Ventricular septal defect Double outlet right ventricle Hypospadias

Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 ' Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

Rectal and large intestinal atresia/stenosig Ebstein anomaly Cleft lip with and without cleft palate Single ventricle Biliary atresia Clubfoot Atrioventricular septal defect Congenital cataract

Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

Hypoplastic left heart syndrome Tetralogy of Fallot Holoprosencephaly Spina bifida without anencephalus Pulmonary valve atresia and stenosis Congenital hip dislocation Transposition of great arteries Omphalocele
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Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

Anotia/microtia Cleft palate alone Bladder exstrophy Reduction deformity, Lower limbs sophageal atresia/tracheoesophageal fist rschsprung disease (congenital megacolo Common truncus (truncus arteriosus) Trisomy 21 (Down syndrome)

Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

ansposition of great arteries (d-TG Reduction deformity, Upper limbs Trisomy 18 Renal agenesis/hypoplasia Cleft lip alone Trisomy 13
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Boxplot of Congential Anomaly Rates by Highest v Lowest Cocaine Exposure Quintiles

Congenital hip dislocation Obstructive genitourinary defect Deletion 22q11.2 Reduction deformity, Lower limbs Epispadias Biliary atresia Trisomy 13

Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

Hypospadias Small intestinal atresia/stenosis Anophthalmia/microphthalmia rschsprung disease (congenital megacolo Bladder exstrophy Trisomy 18

Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

Trisomy 21 (Down syndrome) Patent ductus arteriosus Microcephalus Cleft lip with and without cleft palate Encephalocele Pulmonary valve atresia Tricuspid valve atresia and stenosis Cleft palate alone
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sophageal atresia/tracheoesophageal fist al anomalous pulmonary venous connect Cloacal exstrophy Aortic valve stenosis Rectal and large intestinal atresia/stenosis Diaphragmatic hernia Congenital posterior urethral valves Clubfoot
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Limb deficiencies (reduction defects) Choanal atresia Congenital cataract Interrupted aortic arch Ventricular septal defect Tetralogy of Fallot Cleft lip with cleft palate
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Atrial septal defect Renal agenesis/hypoplasia Hydrocephalus without spina bifida Spina bifida without anencephalus Common truncus (truncus arteriosus) Pulmonary valve atresia and stenosis Atrioventricular septal defect

Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 ' Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5

Reduction deformity, Upper limbs Coarctation of the aorta Transposition of great arteries Omphalocele Hypoplastic left heart syndrome xtro—transposition of great arteries (d-TG Cleft lip alone Single ventricle
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Double outlet right ventricle Ebstein anomaly Amniotic Bands Anencephalus Pyloric stenosis Holoprosencephaly
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Additional Links to US State Neighbourhood Linkage Network Final US State Neighbourhood Linkage Network
for Small intestinal atresia/stenosis for Small Intestinal Atresia / Stenosis




Edited Links for OGUD Datset of US State Final Edited Links for OGUD Dataset for
Neighbourhood Linkage Network US State Neighbourhood Linkage Network
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